Products - Article overview with technical data sheets
DC Isolation Amplifier 2
1 AD-TV1GX 2
2 AD-TV2GX 4
3 AD-TV3GX 6
4 AD-TV12GX 8
5 AD-TV10GVB 10
6 AD-TV24GL 12
7 AD-TV24GVB 14
8 AD-TV22GL 16
9 AD-TV22GVB 18
10 AD-TV40GVC 20
11 AD-TV400GVD 22
12 AD-TV420GVD 24
13 AD-TV30GL 26
14 AD-TV33GL 28
15 AD-TV452GVC-TV454GVF 30
16 AD-TV200GS 32
17 AD-TV200ST 34
18 AD-TV300 36
19 AD-TV412GS 38
20 AD-TV32GL 40
21 AD-TV320GS 42
22 AD-TV350GVF 45
23 AD-TV810GS 47
Supply Isolation Amplifier 49
24 AD-STV2GX 49
25 AD-STV24GVB 51
26 AD-STV24GL 52
27 AD-STV22GVB 53
28 AD-STV22GL 54
29 AD-STV40GVC 56
30 AD-TV400GVD 58
31 AD-TV420GVD 60
32 AD-STH40GVC 62
33 AD-STV300GS 64
34 AD-TV320GS 66
35 AD-STV810GS 69
AC Isolation Amplifier 71
36 AD-SWT 71
37 AD-SWT-TRMS 73
38 AD-TV515GS 75
39 AD-TV561GS 77
40 AD-TV581GS 79
41 AD-TV591GS 81
42 AD-TV588GVD 83
43 AD-KSWXXSO 85
44 AD-HSHXXWG 87
45 AD-SW3GL 88
46 AD-SWK3 89
47 AD-SWK6 91
Isolating Converter 93
48 AD-TW41GMST 93
49 AD-TW201GS-TW202GS 95
50 AD-TW201ST 97
51 AD-TW201MO 99
AC Isolating Converter 100
52 AD-TW21GVD-TW25GVD 100
53 AD-SWT 101
54 AD-SWT-TRMS 103
Transmitter, Isolation Transmitter 105
55 AD-TV400GVD 105
56 AD-TWT24GM 107
57 AD-SWT 109
58 AD-SWT-TRMS 111
59 AD-MWT50ST 113
Ex-Components 115
60 AD-STVEX710GVD 115
61 AD-KVEX 117
Measuring Converter 120
62 AD-VC1GVD 120
63 AD-MV110 123
64 AD-MV550GVD 125
65 AD-MV50GX 127
66 AD-MV50GL 129
67 AD-MV55GX 131
68 AD-MV500GL 135
Limit Switch, Limit Monitor and Monito- ring 137
69 AD-VC1GVD 137
70 AD-MK350GVD 140
71 AD-MK330GS 142
72 AD-SMK330GS 144
73 AD-UW60GT 146
74 AD-LW110GS 148
Multifunction Transducer 150
75 AD-VC1GVD 150
76 AD-VC3 153
77 AD-VC3B 156
78 AD-VC5 158
79 AD-VC5B 160
80 AD-VC4S 162
VarioControl compatible devices 164
81 AD-VARIOCONTROL 164
82 AD-TV400GVD 166
83 AD-TV420GVD 168
84 AD-TV588GVD 170
85 AD-MV550GVD 172
86 AD-MK350GVD 174
87 AD-FM255GVD 176
88 AD-LU32 178
89 AD-LU32 181
90 AD-LU620GVF 184
91 AD-LU625GVF 187
92 AD-VC1GVD 190
93 AD-MM400FE 193
94 AD-MM500FE 195
95 AD-VS8 197
96 AD-MM500FE 199
97 AD-VL500FE 201
98 AD-VL8 203
Power and Energy Measurement 205
99 AD-LU10GT 205
100 AD-LU20GT 208
101 AD-LU25GT 213
102 AD-LU30GT 218
103 AD-LU35GT 221
104 AD-LU40GT 225
105 AD-LU45GT 231
106 AD-LU50GT 237
107 AD-LU55GT 240
108 AD-LU60FE 243
109 AD-LU70FE 245
110 AD-LU610GT 247
111 AD-LU320GVD 252
112 AD-LU325GVD 255
113 AD-LU620GVF 258
114 AD-LU625GVF 261
115 AD-LU650GT 264
116 AD-LU655GT 267
117 AD-LU650GA 270
118 AD-LU680GA 273
119 AD-LU410 276
120 AD-UW60GT 278
121 AD-LW110GS 280
122 AD-KSWXXSO 282
123 AD-HSHXXWG 284
Fieldbus Devices 285
124 AD-AAB20GX 285
125 AD-AEB20GX 288
126 AD-AEB40GT 291
127 AD-KEB20GX 294
128 AD-KAB10GX 297
129 AD-KAB40-80GT 300
130 AD-MV55GX 303
131 AD-MM400FE 307
132 AD-MM500FE 309
133 AD-VARIOCONTROL 311
134 AD-VARIOPASS3 313
135 AD-NETGW100GT 314
Pulse and Frequency Measurement 317
136 AD-FM600GT 317
137 AD-FM600 321
138 AD-FM255GVD 324
139 AD-FM250GVC 326
140 AD-FM210GS 327
141 AD-AI200GVC 329
142 AD-IS102GVC 331
143 AD-IS106GVF 333
144 AD-IU214GVC 335
145 AD-KI10GX 337
146 AD-KI100GS 340
147 AD-KV100GS 342
148 AD-KR11-12 22GX 344
Indicator light 346
149 AD-LM6 346
150 AD-LM6VARIO 347
151 AD-LM8 349
152 AD-LM8VARIO 350
153 AD-LM12 352
154 AD-LM12VARIO 353
155 AD-LM16 355
156 AD-LM16VARIO 356
157 AD-AB12-24-32 358
Overvoltage Protection 360
158 AD-BS1ST-BS2ST-BS3ST 360
Special Functions 363
159 AD-SV2040GS 363
160 AD-SV1224GL 365
161 AD-SWG211 367
162 AD-ISW100GS 369
163 AD-TV32GL 371
164 AD-TV320GS 373
165 AD-BV20GVC 376
166 AD-SMV400GVC 378
167 AD-MMA400GVC 380
168 AD-RA300GVF 382
169 AD-MU400GVC 384
170 AD-AS320GS 386
171 AD-ER01GS 388
Photovoltaic 390
172 AD-PVO2000 390
173 AD-PVO3000 394
174 AD-PVO4000 399
175 AD-PVO6000 403

Isolation Amplifier

Description

The isolation amplifier AD-TV 1 GX, with a construction width of only 6.2 mm , serves the galvanic separation of DC voltage signals. The output signal follows linear the input variable and is, up to a limiting value, independent of the connected burden ($0-10$ VDC, $1: 1$ input/output). Due to the narrow design, a high packing density is achieved. In combination with a DIN rail connector, the wiring is considerably reduced.

Application

Burden amplification and galvanic disconnection of impressed DC voltage signals.

Specific characteristics

- narrow 6.2 mm construction
- Supply via DIN rail connector

Business data

Order number

AD-TV 1 GX

Accessory

DIN-rail connector
AD-GX Connector

Technical specifications	
Input voltage	
Measuring range	$0 \ldots 10 \mathrm{~V}$
Input resistance	100 kOhm
Output voltage	
Output range	0 ... 10 V
Min. burden	500 Ohm
Residual ripple	<0,1\%
Current limit	<28 mA
Transmission behaviour	
Response time	< 50 ms (10-90\%)
Linearity error	< 0,1 \%
Temperature influence	< $70 \mathrm{ppm} / \mathrm{K}$
Supply	
Voltage range	$18 . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	< 850 mW
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail 35mm EN 50022
Type of protection	IP 20
Connection method	screw clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / 4 mm^{2} one wire)
Bolting torque terminals	0,5 Nm
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{11}$	EN 61326-1
Emission ${ }^{2)}$	EN 55011, CISPR11 CI. A, Gr. 1
${ }^{2}$) Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio reception in such environments.	
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	$1,5 \mathrm{kV}, 1 \mathrm{~min}$
Signal/auxiliary voltage	$1,5 \mathrm{kV}, 1 \mathrm{~min}$

Isolation Amplifier

Block and wiring diagram

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 2 GX, with a construction width of only 6.2 mm , serves the galvanic separation of DC current signals. The output signal follows linear the input variable and is, up to a limiting value, independent of the connected burden ($0 / 4-20 \mathrm{~mA}, 1: 1 \mathrm{input/output}$). Due to the narrow design, a high packing density is achieved. In combination with a DIN rail connector, the wiring is considerably reduced.

Application

Burden amplification and galvanic disconnection of impressed DC current signals.

Specific characteristics

- narrow 6.2 mm construction
- Supply via DIN rail connector

Business data

Order number

Accessory

DIN-rail connector
AD-TV 2 GX

AD-GX Connector

Technical specifications	
Input current	
Measuring range	0 ... 20 mA
Input resistance	50 Ohm
Output current	
Output range	0 ... 20 mA
Max. burden	400 Ohm
Residual ripple	< 0,1 \%
Open-circuit voltage	< 13V
Transmission behaviour	
Response time	< 50 ms ($10-90 \%$)
Linearity error	< 0,1 \%
Temperature influence	< 70 ppm/K
Supply	
Voltage range	$18 . . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	< 850 mW
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail 35 mm EN 50022
Type of protection	IP 20
Connection method	screw clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / 4 mm^{2} one wire)
Bolting torque terminals	0,5 Nm
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard During electromagnetic disturbance	EN 61326-1 nges in output signal are possible
Emitted interference Warning: This device is not intended to be us radio reception in such environmen	EN 55011, CISPR11 CI. A, Gr. 1 ential areas and can not ensure adequate protection of
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	$1,5 \mathrm{kV}, 1 \mathrm{~min}$
Signal/auxiliary voltage	$1,5 \mathrm{kV}, 1 \mathrm{~min}$

Isolation Amplifier

Block and wiring diagram

Dimensions

Isolation Amplifier

Vario-Isolation-Amplifier

Description

The VARIO isolation amplifier AD-TV 3 GX, with a construction width of only 6.2 mm , serves the galvanic separation, conversion and amplification of DC current signals and voltage signals (0/4-20 mA and 0/2-10 V). The signal magnitudes can be selected with DIP switches. For range changing, manual adjustment is required, the initial values and final values can be adjusted via a trimmer. The output signal follows linear the input variable and is, up to a limiting value, independent of the connected burden. Due to the narrow design, a high packing density is achieved. In combination with a DIN rail connector for bridging the supply voltage, the wiring is considerably reduced.

Application

Conversion, burden amplification and galvanic disconnection of impressed DC current signals and voltage signals.

Specific characteristics

- narrow 6.2 mm construction
- Supply via DIN rail connector

Business data

Order number

Accessory

DIN-rail connector
AD-GX Connector

Technical specifications	
Input current	
Measuring range	0 ... 20 mA
Input resistance	50 Ohm
Input voltage	
Measuring range	$0 \ldots 5 \mathrm{~V} ; 0 \ldots 10 \mathrm{~V}$
Input resistance	$10 \mathrm{kOhm} / \mathrm{V}$
Output current	
Output range	0 ... 20 mA
Max. burden	500 Ohm
Open-circuit voltage	< 13 V
Output voltage	
Output range	0 ... 10 V
Min. burden	500 Ohm
Current limit	<28 mA
Transmission behaviour	
Response time	< 50 ms (10-90\%)
Linearity error	<0,1\%
Residual ripple	<0,1\%
Temperature influence	< 70 ppm/K
Adjust begin	+/-22\%
Adjust end	+/-5\%
Supply	
Voltage range	$18 . . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	< 850 mW
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail 35mm EN 50022
Type of protection	IP 20
Connection method	screw clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / 4 mm^{2} one wire)
Bolting torque terminals	0,5 Nm
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard During electromagnetic disturbance	EN 61326-1 nges in output signal are possible.
Emitted interference	EN 55011, CISPR11 CI. A, Gr. 1
Warning: This device is not intended to be us radio reception in such environments.	ential areas and can not ensure adequate protection of
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	$1,5 \mathrm{kV}, 1 \mathrm{~min}$
Signal/auxiliary voltage	$1,5 \mathrm{kV}, 1 \mathrm{~min}$

Vario-Isolation-Amplifier

Display and operating elements

Front

Block and wiring diagram

Dimensions

Isolation Amplifier

Multiplier Isolation Amplifier

Description

The multiplier separation amplifier AD-TV 12 GX in the narrow 6.2 mm housing serves the galvanic separation, amplification and conversion or adaption of analogue measuring signals and, at the same time, the multiplication of the input signal. The compact housing contains two synchronous output channels. All output channels are galvanic separated from each other, from the input and from the supply voltage. The type of signal can be freely selected at the input and the signal is multiplied onto the two current outputs. The standard signal combinations can be selected via the DIP switches at the side of the unit. Additionally, the separation amplifier has a highly efficient electronic power pack, which admits high loads at the two current outputs and causes low heat development. The unit can also be supplied via a hat rail connector, available as option; therefore several units in the GX series can sit side by side on the hat rail and the supply voltage must only be laid on once.

Application

Galvanic separation or conversion of analogue standard signals with simultaneous multiplication.

Specific characteristics

- narrow 6.2 mm type of construction
- two galvanic separated, synchronous current outputs
- current and voltage input (switchable)
- easy configuration through DIP switch at the side of the unit
- supply via hat rail connector

Business data

Order number

AD-TV 12 GX

Accessory

DIN-rail connector
AD-GX Connector

Technical specifications	
Input	
Range current input	0 ... $20 \mathrm{~mA} ; 4$... 20 mA
Range voltage input	0 ... 10 V
Input resistance current	50 Ohm
Input resistance voltage	100 kOhm
Output	
2 current outputs	0 ... 20 mA ; 4 ... 20 mA
Max. load	400 Ohm per channel
Max. residual ripple	50 mVss
Signal clamping	20 mA
Supply	
Voltage range	$18 . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	<1,5 W
Accuracy	
Accuracy	<0,2\%
Linearity error	<0,2\%
Temperature influence	$70 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 10 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Type of protection	IP 20
Connection method	screw clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / 4 mm^{2} one wire)
Bolting torque terminals	0,5 Nm
Weight	$\sim 70 \mathrm{~g}$
Manner of fastening	35 mm DIN rail
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{11}$	EN 61326-1
Emission ${ }^{2)}$ ${ }^{1)}$ During checking, slight signal deviat	EN 55011, CISPR11 CI. A, Gr. 1 possible.
${ }^{2}$) Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio reception in such environments.	
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation, test voltages	
Input / output	1,5 kV (1 min.)
Signal / supply unit	1,5 kV (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection

Display and operating elements

input	$\begin{gathered} 0-20 \mathrm{~mA} \\ \text { oder } \\ 0-10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4-20 \mathrm{~mA} \\ & \text { oder } \\ & 0-10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0-20 \mathrm{~mA} \\ \text { oder } \\ 0-10 \mathrm{~V} \end{gathered}$	4-20 mA
output	0-20 mA	0-20 mA	4-20 mA	4-20 mA
	号 $\rightarrow+$	$\underline{2 \rightarrow \sim}$	$\xrightarrow{2 \rightarrow-}$	2世~

(32)
input / output combination

> input
> (current or voltage)
(S1)

Block and wiring diagram

Dimensions

Isolation Amplifier

Isolation Amplifier For Voltage Signals AD-TV 10 GVB

Description

The isolation amplifier AD-TV 10 GVB serves the galvanic separation and amplification of DC voltage signals $(0 / 2-10 \mathrm{~V})$. The output signal follows the input variable linear and is independent of the connected burden up to a limiting value. Additionally, the separation amplifier has a special voltage input, which can be realised according to customer data, up to a maximum of 300 VDC. Input, output and supply voltage are separated from each other with high insulation. An internal electronic power pack with high efficiency and a voltage range of 11 to 30 VDC prevents a strong temperature rise and allows high output burdens. Therefore, the separation amplifier is also optimally suitable for battery operation. High packaging density and working ergonomics are achieved in combination with detachable terminal clamps and a construction width of 13 mm .

Application

Burden amplification and galvanic decoupling of DC voltage signals in the lower supply voltage range.

Specific characteristics

- supply voltage range: 11 ... 30 V DC
- special voltage input up to 300 V DC

Business data

Order number
AD-TV 10 GVB

Technical specifications	
Input	
Input voltage	0 ... 10 V (Rin: 100 kOhm)
Special voltage input	max. 0 ... 300 V (customer data)
Output	
Output voltage	$0 \ldots 10 \mathrm{~V}$
Minimum load	min. 5 kOhm
Residual ripple	max. 50 mVss
Supply	
Voltage range	$11 . . .30 \mathrm{~V}$ DC
Nominal voltage	12 V DC / 24 V DC
Power consumption	max. 0,4 W
Accuracy	
Accuracy	<0,2\%
Temperature influence	$50 \mathrm{ppm} / \mathrm{K}$
Response time	max. 2 ms
Housing	
Dimensions (WxHxD)	$13 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire)
Bolting torque terminals	0,5 Nm
Weight	ca. 98 g
Manner of fastening	DIN rail 35mm (EN 50022)
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages, overvoltage category II	
Input / output	$3,75 \mathrm{kV}$ (1 min.)
Signal / supply unit	4 kV (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection

Dimensions

Isolation Amplifier

Description

The separation amplifier AD-TV 24 GL serves the galvanic separation and amplification of DC-current signals ($0 / 4-20 \mathrm{~mA}$). The output signal follows linear the input dimension and is independent of the connected burden up to a limiting value. Input, output and supply voltage are galvanically separate from each other with high insulation. An integral electronic power pack with a high degree of effectiveness prevents strong heating and allows high output loads. A high packing density is achieved in combination with a narrow type of construction.

Application

Burden amplification and galvanic decoupling of active DC-current signals in a cost-effective build-up.

Specific characteristics

- Supply buffer amplifier for 3-way separation of 0/4-20 mA signals (output follows input 1:1)
- 18 mm narrow housing

Business data

Order number
AD-TV 24 GL

Technical specifications

Input current	
Measuring range	0 ... 20 mA ; $4 \ldots 20 \mathrm{~mA}$
Input resistance	50 Ohm
Output current	
Output range	0 ... 20 mA ; $4 \ldots 20 \mathrm{~mA}$
	$1: 1$ to the input signal
Max. burden	400 Ohm
Residual ripple	<25 μ Ass
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Supply	
Supply voltage	$20 . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	0,9 W
Housing	
Dimensions (WxHxD)	$18 \times 81 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Manner of fastening	DIN rail 35mm (EN 50022)
Weight	ca. 100 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {1) }}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}$ RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)
Protective systems	
Input/output	electrical surge protection electrical surge and reverse current protection

Isolation Amplifier

Dimensions

Isolation Amplifier

Description

The separation amplifier AD-TV 24 GVB serves the galvanic separation and amplification of DC-current signals ($0 / 4-20 \mathrm{~mA}$). The output signal follows linear the input dimension and is independent of the connected burden up to a limiting value. Input, output and supply voltage are galvanically separate from each other with high insulation. An integral electronic power pack with a high degree of effectiveness prevents strong heating and allows high output loads. A high packing density is achieved in combination with a narrow type of construction.

Application

Burden amplification and galvanic decoupling of active DC-current signals in a cost-effective build-up.

Specific characteristics

- Supply buffer amplifier for 3-way separation of 0/4-20 mA signals (output follows input 1:1)
- 13 mm narrow housing

Business data

Order number
AD-TV 24 GVB

Technical specifications

Input current

Measuring range
Input resistance
Output current
Output range
Max. burden
Residual ripple
Transmission behaviour
Basic accuracy
Temperature influence

Supply

Supply voltage
Nominal voltage
Power consumption

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Manner of fastening
Weight

Environmental conditions

Ambient temperature
Storage and transport
EMC
$\begin{array}{ll}\text { Product family standard } & \text { EN 61326-1 } \\ \begin{array}{l}\text { 1) } \\ \text { Emitted interference }\end{array} & \text { EN 55011, CISPR11 CI. B, Gr. } 1\end{array}$
${ }^{11}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV} \mathrm{RMS}(1 \mathrm{~min})$.
Signal/auxiliary voltage	$3 \mathrm{kV} \mathrm{RMS}(1 \mathrm{~min})$.
Protective systems	
Input/output electrical surge protection Power supply electrical surge and reverse current protection	

Isolation Amplifier

Isolation Amplifier

Description

The separation amplifier AD-TV 22 GL serves the galvanic separation and amplification of DC-current signals ($0 / 4-20 \mathrm{~mA}$). The output signal follows linear the input dimension and is independent of the connected burden up to a limiting value. Input, output and supply voltage are galvanically separate from each other with high insulation. An integral electronic power pack with a high degree of effectiveness prevents strong heating and allows high output loads. A high packing density is achieved in combination with a narrow type of construction.

Application

Burden amplification and galvanic decoupling of active DC-current signals in a cost-effective build-up.

Specific characteristics

- Supply buffer amplifier for 3-way separation of 0/4-20 mA signals (output follows input 1:1)
- 18 mm narrow housing

Business data

Order number
AD-TV 22 GL

Technical specifications

Input current	
Measuring range	0 ... 20 mA ; $4 \ldots 20 \mathrm{~mA}$
Input resistance	50 Ohm
Output current	
Output range	0 ... 20 mA ; $4 \ldots 20 \mathrm{~mA}$
	$1: 1$ to the input signal
Max. burden	400 Ohm
Residual ripple	<25 μ Ass
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Supply	
Supply voltage	20 ... 253 V DC / 50 ... 253 V AC
Nominal voltage	24 V DC / 230 V AC
Power consumption	0,9 W / 2 VA
Housing	
Dimensions (WxHxD)	$18 \times 81 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Manner of fastening	DIN rail 35mm (EN 50022)
Weight	ca. 100 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {1) }}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Functional safety

Safety integrity level SIL 2 (IEC 61508)

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}$ RMS (1 min.)
Signal/auxiliary voltage	$3 \mathrm{kV} \mathrm{RMS} \mathrm{(1} \mathrm{min)}$.
Protective systems	electrical surge protection Input/output
Power supply	electrical surge and reverse current protection

Isolation Amplifier

Dimensions

Isolation Amplifier

Description

The separation amplifier AD-TV 22 GVB serves the galvanic separation and amplification of DC-current signals ($0 / 4-20 \mathrm{~mA}$). The output signal follows linear the input dimension and is independent of the connected burden up to a limiting value. Input, output and supply voltage are galvanically separate from each other with high insulation. An integral electronic power pack with a high degree of effectiveness prevents strong heating and allows high output loads. A high packing density is achieved in combination with a narrow type of construction.

Application

Burden amplification and galvanic decoupling of active DC-current signals in a cost-effective build-up.

Specific characteristics

- Supply buffer amplifier for 3-way separation of 0/4-20 mA signals (output follows input 1:1)
- 13 mm narrow housing

Business data

Order number
AD-TV 22 GVB

Technical specifications

Input current	
Measuring range	0 ... $20 \mathrm{~mA} ; 4$... 20 mA
Input resistance	50 Ohm
Output current	
Output range	0 ... 20 mA ; $4 . . .20 \mathrm{~mA}$
	1:1 to the input signal
Max. burden	400 Ohm
Residual ripple	<25 μ Ass
Transmission behaviour	
Basic accuracy	< 0,2\%
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Supply	
Supply voltage	20 ... 253 V DC / 50 ... 253 V AC
Nominal voltage	24 V DC / 230 V AC
Power consumption	0,9 W/2 VA
Housing	
Dimensions (WxHxD)	$13 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire)
Bolting torque terminals	0,5 Nm
Manner of fastening	DIN rail 35mm (EN 50022)
Weight	ca. 100 g
Environmental conditions	
Ambient temperature	$-10 \ldots 5{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {1) }}$
Emitted interference ${ }^{11}$ During electromagnetic disturbance	EN 55011, CISPR11 CI. B, Gr. 1 anges in output signal are possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	3,75 kV RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)
Protective systems	
Input/output	electrical surge protection
Power supply	electrical surge and reverse current protection

Isolation Amplifier

Isolation Amplifier

Description

The isolation amplifier AD-TV 40 GVC is designed for the galvanic isolation and amplification of standard analog signals ($0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{VDC}$). The standard signals $0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{~V}$ are freely selectable via switch or terminal on both the input and at the output. All ranges are calibrated fixed, but can be adjusted via front-trimmer. In addition, this device comes standard with a configuration interface ADPC, with which the input and output measurement signal with the optional AD-Studio programming software in the range of max. 20 mA or 10 VDC can be freely programmed. The selected linear output signal follows the input size up to a limit independent of the connected load. Input, output and power supply voltage are galvanically isolated from each other with high insulation. An integral electronic wide range power supply with high efficiency prevents strong heating and allows high output loads.

Application

Galvanic isolation of standard signals with simultaneous amplification or conversion of the analog standard signal.

Specific characteristics

- All standard signals at the input and output are freely selectable
- Switchable zero and span trimmer
- Special signals can be parameterized via interface
- Weitbereichsnetzteil

Business data

Order number
AD-TV 40 GVC

Technical specifications

Input current	
\quad Measuring range	$0 \ldots 20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}$
Resolution	10 Bit
Input resistance	50 Ohm
Input voltage	
Measuring range	$0 \ldots 10 \mathrm{~V} ; 2 \ldots 10 \mathrm{~V}$
Resolution	10 Bit
Input resistance	$>700 \mathrm{kOhm}$

Input filter (optional programmable with VarioConfig)
Filter
$10 \mathrm{~ms} /$ filter value ($0 \ldots 30.000$)
Output current
Output range
Resolution
Max. burden
Residual ripple
Output voltage
Output range
Resolution
Min. burden
Residual ripple
0 ... $20 \mathrm{~mA} ; 4$... 20 mA
11 Bit
400 Ohm
$<50 \mu$ Ass

Linearity error
Accuracy

Basic accuracy	$0,3 \%$
Temperature influence	$<100 \mathrm{ppm} / \mathrm{K}$
Response time	approx. 70 ms
Trimmer function	
Trim range	approx. $+/-20 \%$

Configuration interface

AD-PC -> USB
(optional programmable with VarioConfig software)

Supply	
\quad Supply voltage	$20 \ldots 253 \mathrm{~V} \mathrm{DC} \mathrm{/} 50 \ldots 253 \mathrm{~V} \mathrm{AC}$
Max. power consumption	$1,2 \mathrm{~W} / 2,8 \mathrm{VA}$
Housing	
Dimensions (WxHxD)	$18 \times 110 \times 128 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Bolting torque terminals	$0,5 \mathrm{Nm}$
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Manner of fastening	DIN rail 35 mm 35 mm
Weight	$\mathrm{ca} 130 g$.
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Isolation Amplifier

Technical specifications

EMC

Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11

During checking, slight signal deviations are possible

Electrical safety requirements

Product family standard EN 61010-1

Galvanic isolation, test voltages

Input/output	$2,5 \mathrm{kV}$ RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)

Protective systems

Input/output	over voltage and over current
Power supply	over voltage, over current and over temperature

Block and wiring diagram

Function DIP-switch

Trimmer on
Factory setting, according to standard signals switches 1 and 2
Trimmer off
Activates the front trimmer for Offset (zero) and span
Adjustment range: $+/-20 \%$
DIP Factory settings, input and output signals such as switches 1-3

PC AD-studio setup position, Switches 1-3 functionless

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 400 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. Due to its current-sinking output, transmitter signals can also be separated or converted. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/- 1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- bipolar current or voltage output
- current sink output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier
AD-TV 400 GVD

Accessory (optional)

Operating module
USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring range	-50 ... + 50 mA DC
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100 \mathrm{~V}$ DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	19,5 V
Current limit	$\sim 25 \mathrm{~mA}$
Output current	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Output voltage	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Current sink output	
Current sink	0/4 ... 20 mADC
Max. voltage to be applied	35 V DC
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... $253 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,4 \mathrm{~W}$
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category
EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 400 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Isolation Amplifier

Description

The isolation amplifier AD-TV 420 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/-1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- 2 bipolar current or voltage output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier

Accessory (optional)

Operating module
USB programming adapter
Configuration software

Test

Modbus Protokoll

GTC

AD-TV 420 GVD

AD-VarioControl / AD-VarioConnect
AD-Variopass
70|AD-Studio
http://www.modbus.org/specs.php|Pr otokoll-Spezifikation der Modbus Organisation agb.pdf|Adamczewski AGB

Technical specifications

Input current	
Measuring range	$-50 \ldots+50 \mathrm{~mA} \mathrm{DC}$
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100$ V DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	24,5 V
Voltage at 20 mA	19,5 V
Current limit	~ 25 mA
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2 \% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	4,4 VA / 2,8 W
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference
EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

Display and operating elements

TV420 GVD
On
on
\square
\square

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,51 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$3,75 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 420 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Isolation Amplifier

Vario-Isolation-Amplifier

Description

The VARIO isolation amplifier AD-TV 30 GL serves to galvanically separate, convert and amplify DC current signals and voltage signals ($0 / 4 \ldots 20 \mathrm{~mA}$ and $0 / 2 \ldots 10 \mathrm{~V}$ DC). The signal sizes are adjustable at the front. The output signal follows the input size linear and is independent of the connected load up to a limiting value. Input, output and the supply voltage are galvanically separated from each other with a high degree of insulation. A highly efficient, integrated electronic wide-range power pack enables operation with $20 \ldots 253$ V DC or $50 \ldots 253$ V AC. There is no possibility of cross polarity of the connection voltage. A high packing density is achieved due to its narrow build.

Application

Conversion, load amplification and galvanic decoupling of impressed DC current signals and voltage signals.

Business data

Order number
AD-TV 30 GL

Technical specifications	
Input current	
Measuring range	0/4... 20 mA
Input resistance	85 Ohm
Input voltage	
Measuring range	0/2 ... 10 V
Input resistance	> 100 kOhm
Output current	
Output range	0/4 ... 20 mA
Max. burden	500 Ohm
Residual ripple	50 HAss
Output voltage	
Output range	0/2 ... 10 V
Min. burden	> 10 kOhm
Residual ripple	50 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,3 VA / 1W
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 20 \mathrm{~ms}$
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$18 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input / output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection

Vario-Isolation-Amplifier

Isolation Amplifier

Vario-Isolation-Amplifier

Description

The vario-separation amplifier AD-TV 33 GL serves the galvanic separation and amplification of standard DC analogue signals. The standard signals $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ and $0-10 \mathrm{~V}$ are freely selectable at the front via switches at the input as well as at the output. All measuring ranges are permanent calibrated, however, they can still be adjusted via potentiometer at the front, which can be switched on. The selected output signal follows linear the input magnitude and is independent from the connected load up to a limiting value. Input, output and the supply voltage are galvanically separated from each other with a high insulation. An integral electronic wide range power pack with high efficiency prevents strong increases in temperature and allows high output loads. A high pack density is achieved in combination with the narrow type of construction. The universality saves storage costs, a diversity of types is therefore eliminated.

Application

For load amplification, galvanic decoupling and conversion of impressed standard signal measuring magnitudes.

Specific characteristics

- all standard signals at input and output are freely selectable
- switchable zero point trimmer and final value trimmer
- high output load
- 18 mm narrow housing
- wide range power supply

Business data

Order number
AD-TV 33 GL

Isolation Amplifier

Vario-Isolation-Amplifier

Circuit examples

Switch Operation:
SO: Input signal current or voltage S1: Activation zero-trimmer
S2: Input signal $4 \ldots 20 \mathrm{~mA}$
S3: Output signal $4 . . .20 \mathrm{~mA}$
S4: Activation zero-trimmer
S5: Activation span-trimmer
S6: Output signal current
S7: Output signal voltage
After activation of the trimmer the calibrated values can be adjusted. If activation is restored, the device has the default values.

Isolation Amplifier

Multiplier Isolation Amplifier
AD-TV 452 GVC

Description

The multiplier isolation amplifiers AD-TV 452 GVC and AD-TV 454 GVF are used for galvanic isolation, amplification and transformation, or adjustment of analog measurement signals with simultaneous multiplication of the input signal. The compact housing contains 2 or 4 completely independent output channels, which are galvanically isolated from the input, the supply voltage and the other outputs. The signal types at the input and the output can be selected via clamps. At the front side there are spindle trimmers (Zero Z1..2/4 / Span S1..2/4) for direct adjustment. The efficient wide range power supply allows operation in a wide supply voltage range with low heat generation.

Application

Galvanic isolation, transformation, amplification and conversion of an analog measurement signal and additional multiplication into 2 or 4 independent output channels.

Specific characteristics

- 2 galvanically isolated outputs (AD-TV 452 GVC)
- 4 galvanically isolated outputs (AD-TV 454 GVF)
- Wide range power supply
- Signal type selectable via terminals
- Start and end of measuring range adjustable via trimmer

Business data

Order number

AD-TV 452 GVC	two galvanically isolated outputs
AD-TV 454 GVF	four galvanically isolated outputs

Technical specifications

Input current

Measuring range
Input resistance
Input voltage
Measuring range
Input resistance
Output current
Output range
Max. burden
Residual ripple
Output voltage
Output range
Min. burden
Residual ripple

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC
TV 452 GVC
Power consumption AC / DC
TV 454 GVF
Transmission behaviour
Basic accuracy
Temperature influence
Response time

Housing	
Outlines TV 452 GVC (bxhxt)	$18 \times 110 \times 134 \mathrm{~mm}$
Outlines TV 454 GVF (bxhxt)	$33 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight TV 452 GVC	$\sim 130 \mathrm{~g}$
Weight TV 454 GVF	$\sim 210 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
$0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$ 50 Ohm

0 ... $10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$
100 kOhm

0 ... $20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$
400 Ohm
40μ Ass

0 ... $10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$
10 kOhm
20 mVss

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
230 V AC
21 ... 253 V DC
24 V DC
$\max 3 \mathrm{VA} / 2 \mathrm{~W}$
$\max 5 \mathrm{VA} / 4 \mathrm{~W}$
< 0,2 \%
max $50 \mathrm{ppm} / \mathrm{K}$
~ 20 ms
$18 \times 110 \times 134 \mathrm{~mm}$
$0 \times 134 \mathrm{~mm}$
detachable terminal clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
0,5 Nm
$\sim 210 \mathrm{~g}$
35 mm DIN rail 35 mm
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Isolation Amplifier

Multiplier Isolation Amplifier

Technical specifications

EMC

Product family standard Emitted interference

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard
Overvoltage category
Elevation
Pollution degree
Galvanic isolation, test voltages
Gaivanic isolation, test voltages
Input / output
$2,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
$2,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit
electrical surge protection
electrical surge protection
electrical surge and reverse current protection

During checking, slight signal deviations are possible.

Block and wiring diagram

Display and operating elements

$Z x=$ Zero trimmer - begin of measuring range Sx = Span trimmer - end of measuring range
$x=$ Output

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 200 GS is used for galvanic isolation, amplification and conversion or adaptation of analog measurement signals. Two front-side spindle trimmers can be used to additional adjust the offset (zero) and full scale (span). The integrated wide-range power supply allows operation in a wide supply voltage range with low selfheating.

Application

Galvanic isolation, adapt, amplify and transform analog measurement signals.

Business data

Order code

ADTV200GS223
ADTV200GS243
ADTV200GS213
ADTV200GS423
ADTV200GS443
ADTV200GS413
ADTV200GS124
ADTV200GS143
ADTV200GS113

input / output

0... $20 \mathrm{~mA} / 0 . . .20 \mathrm{~mA}$
$0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$
0... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
$4 . . .20 \mathrm{~mA} / 0 . . .20 \mathrm{~mA}$
4... 20 mA / $4 \ldots 20 \mathrm{~mA}$
4... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
0... $10 \mathrm{~V} / 0 . . .20 \mathrm{~mA}$
0... $10 \mathrm{~V} / 4 . . .20 \mathrm{~mA}$
$0 . . .10 \mathrm{~V} / 0 . . .10 \mathrm{~V}$

Isolation Amplifier

AD-TV 200 GS

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 200 ST is used for galvanic isolation, amplification and conversion or adaptation of analog measurement signals. Two front-side spindle trimmers can be used to additional adjust the offset (zero) and full scale (span). The device type consists of a terminal block and a plug-in isolating amplifier. The user-friendly and easy-to-install plug-in module technology (type ST) enables fast and trouble-free commissioning or exchange device processing.

Application

Galvanic isolation, adapt, amplify and transform analog measurement signals.

Business data

Order code
ADTV200ST225
ADTV200ST245
ADTV200ST215
ADTV200ST425
ADTV200ST445
ADTV200ST415
ADTV200ST125
ADTV200ST145
ADTV200ST115

input / output

$0 . . .20 \mathrm{~mA} / 0 . . .20 \mathrm{~mA}$
$0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$
0 ... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
$4 . . .20 \mathrm{~mA} / 0 \ldots 20 \mathrm{~mA}$
$4 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$
4 ... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
$0 . . .10 \mathrm{~V} / 0 . . .20 \mathrm{~mA}$
$0 . . .10 \mathrm{~V} / 4 . . .20 \mathrm{~mA}$
$0 . . .10 \mathrm{~V} / 0 . . .10 \mathrm{~V}$

Technical specifications	
Input	
Measuring range current	0 ... $20 \mathrm{~mA} ; 4 . . .20 \mathrm{~mA}^{1)}$
Input resistance	50 Ohm
Measuring range voltage	$0 \ldots 10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}^{1)}$
Input resistance	100 kOhm
Output	
Output range current	0 ... $20 \mathrm{~mA} ; 4 . . .20 \mathrm{~mA}^{1)}$
Max. burden	500 Ohm
Output range voltage	0 ... $10 \mathrm{~V} ; 2$... $10 \mathrm{~V}^{1)}$
Min. burden	500 Ohm
Residual ripple "adjustable; others on request	< 50 mVss
Housing ST	
Dimensions (WxHxD)	$21 \times 42 \times 102 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 80 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Transmission behaviour	
Basic accuracy	<0,3\%
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Supply	
Supply voltage	$20 . . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	1 W
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {2) }}$
Emitted interference ${ }^{2}$) During electromagnetic disturbance minor	EN 55011, CISPR11 CI. B, Gr. 1 anges in output signal are possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	0,5 kV RMS (1 min.)
Signal/auxiliary voltage	1 kV RMS (1 min.)
Protective systems	
Input/output	electrical surge protection
Power supply	electrical surge and reverse current protection

Isolation Amplifier

Display and operating elements

Designation	LED	Meaning
On	green	Power supply
Zero		adjust zero
Span		adjust span

Block and wiring diagram

Dimensions

Isolation Amplifier

Description

The universal isolating amplifier AD-TV 300 GS converts the three standard industrial signals $0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$, amplifies them and separates them galvanically. The three signals are also available at the output. All combinations are possible. A switchover is not necessary. The signal combination from input to output is selected via the terminals.

Application

Amplification and adaptation of standard signals with easy conversion to a freely selectable output signal.

Specific characteristics

- Three standard signals freely selectable at the input and output
- Galvanic isolation and amplification
- No mechanical switches necessary
- Input / output combination by clamping the desired signals
- No subsequent adjustment necessary
- Suppression of live zero signal (4mA)
- Price / performance ratio allows for warehousing

Business data

Order number
AD-TV 300 GS

Technical specifications	
Current inputs	
Measuring range 1	0 ... 20 mA
Measuring range 2	$4 \ldots 20 \mathrm{~mA}$
Input resistance 1/2	50 Ohm
Input voltage	
Measuring range	0 ... 10 V
Input resistance	750 kOhm
Current outputs	
Output range 1	0 ... 20 mA
Output range 2	$4 \ldots 20 \mathrm{~mA}$
Maximum burden 1/2	500 Ohm
Simultaneous use	Nein
Output voltage	
Output range	$0 \ldots 10 \mathrm{~V}$
Min. burden	1000 Ohm
Supply	
Voltage range	$\begin{aligned} & 50 \ldots 253 \text { V AC }(50 \mathrm{~Hz}) \text {, } \\ & 20 . . .253 \vee \mathrm{DC} \end{aligned}$
Nominal voltage	230 V AC (50 Hz), 24 V DC
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 50 \mathrm{~ms}$ ($10 \ldots . .90 \%$ output signal)
Housing	
Dimensions (WxHxD)	$18 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 140 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input to output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Input, output to supply	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
${ }^{1}$) During checking, slight signal deviations are	possible.

Isolation Amplifier

AD-TV 300 GS

Block and wiring diagram

Dimensions

AD-TV 411 GS

Current Isolation Amplifier

AD-TV 412 GS

Description

The single or dual channel isolation amplifier of the series AD-TV 411 GS and AD-TV 412 GS 2 is being used for the galvanical isolation and amplification of impressed currents of $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$. The output current is unaffected from the connected load. The output follows the input 1:1. Input, output and supply current are separated galvanically. All channels are isolated from each other galvanically. Through its efficient wide-range power supply unit of the isolation amplifier can be operated over a wide supply voltage range with low level of intrinsic heating.

Application

Single or dual channel burden amplification and galvanic decoupling of impressed DC current signals.

Specific characteristics

- Single or dual channel version available
- Electrical 3-way isolation
- Wide range power supply
- Narrow width housing

Business data

Order number

AD-TV 411 GS
AD-TV 412 GS
single-channel version dual-channel version

Technical specifications	
Input current	
Measuring range	0 ... 20 mA or 4 ... 20 mA
Required input voltage	ca. $0,8 \mathrm{~V}$
Output current	
Output range	0 ... 20 mA or 4 ... 20 mA
Max. burden	500 Ohm
Residual ripple	40μ Ass
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC (AD-TV 411 GS)	$4 \mathrm{VA} / 1,5 \mathrm{~W}$
Power consumption AC / DC (AD-TV 412 GS)	$5 \mathrm{VA}, 2,5 \mathrm{~W}$
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	$15 \mathrm{ppm} / \mathrm{K}$
Response time	0,2 ms
Load influence	0,02\% / 100 Ohm
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 160 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{1 \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input / output	$0,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Channel 1 / Channel 2 (TV 412 GS)	$0,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	Protection against overvoltage, reverse polarity, over temperature and over current

Block and wiring diagram

Dimensions

Isolation Amplifier

Isolation Amplifier With Nominal Value Selector

Description

The VARIO-isolation amplifier AD-TV 32 GL serves the galvanic separation, conversion and amplification of DC current and voltage signals ($0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{~V} \mathrm{DC}$). The signal dimensions are adjustable at the front. The starting and end values can here be adjusted independent of each other. Input, output and the supply voltage are separate from each other with high insulation. An integral electronic wide range power pack with a high degree of effectiveness allows operation in a supply range of $20 \ldots 253 \mathrm{~V}$ DC or $50 \ldots 253 \mathrm{~V}$ AC. Additionally, a nominal value can be specified via switch at the front at the output. The input measuring signal is decoupled and without influence during this. The nominal value at the output, which can be activated and adjusted via a potentiometer at the front.

Application

Conversion, burden amplification and galvanic decoupling of active DCcurrent and voltage signals with additional manual / automatic operation via a nominal value specification, which can be activated.

Specific characteristics

- Front panel switch for switching between manual and automatic operation
- Value setting for manual operation by front-face potentiometer

Business data

Order number
AD-TV 32 GL

Technical specifications	
Input current	
Measuring range	0/4... 20 mA
Input resistance	85 Ohm
Input voltage	
Measuring range	0/2 ... 10 V
Input resistance	> 100 kOhm
Output current	
Output range	0/4 ... 20 mA
Max. burden	500 Ohm
Residual ripple	50μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. burden	> 10 kOhm
Residual ripple	50 mVss
Setpoint setting	
Front mounted potentiometer	0... 100%
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage AC / DC	230 V AC / 24 V DC
Power consumption AC / DC	2,3 VA / 1W
Transmission behaviour	
Basic accuracy	<0,2 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 20 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$18 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{1 \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input / output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection

Dimensions

Supply Isolation Amplifier

Isolation Ampilifer With Reference Function

Description

The set value buffer amplifier AD-TV 320 GS serves the galvanic separation, transformation and amplification of DC current and voltage signals ($0 / 4-20 \mathrm{~mA}$ or $0 / 2-10 \mathrm{~V}$). The device has additionally a transmitter supply and a set value function, which can be switched on. The activation of the set value function is carried out selectable with a brief depression of the key at the front or with a control signal (24 V active or contact) at the remote control input. Any output set value is set with the potentiometer at the front. Activation of zero trimmers and full trimmers is possible with longer depression of the set value key. With this, the signal magnitudes are adjustable in the range of $\pm 25 \%$. An integral electronic wide range power pack allows operation in a wide supply area.

Application

Transformation, burden amplification and galvanic disconnection of impressed transmitter signals, current signals and voltage signals with additional simulation function via set value specification, which can be activated.

Specific characteristics

- Restoration of the last device condition on supply connection (i.e. after power cut).
- Setting of a set value is carried out undamped and independent of the trimmer positions between $0 . .100 \%$ of the specified output range.
- Check back contact in set value condition (closer).
- The output signal remains even with missing input signal at the output start (i.e. 4 mA).
- Configurable via AD-STUDIO.

Business data

Order number
AD-TV 320 GS

Technical specifications

Transmitter supply

Feeding voltage
Current limit
Input current
Measuring range Input resistance
Input voltage
Measuring range
Input resistance

Output current

Output range
Max. burden
Max. residual ripple
Output voltage
Output range
Min. burden
Max. residual ripple

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Input power AC/DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time
Damping (optional)
Trimmer function
Linearization (optional)
Setpoint encoder
Remote control
Input
Voltage
Pulse controlled
Static
Front button

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Weight
Manner of fastening
Environmental conditions
Ambient temperature
Storage and transport
$26 \ldots 19 \mathrm{~V}(4 \ldots 20 \mathrm{~mA})$
$\sim 25 \mathrm{~mA}$

0 ... 20 mA "
50 Ohm

0 ... 10 V "
100 kOhm (10 kOhm / Volt)

0 ... 20 mA "
500 Ohm
40μ Ass

0 ... 10 V "
1 kOhm
20 mVss

50 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
230 V AC
20 ... 253 V DC
24 V DC
3,5 VA / 2,0 W
< 0,2 \%
$100 \mathrm{ppm} / \mathrm{K}$
50 ms
$0,1 \% / \mathrm{s}$ (linear max. ~950 s)
+/-25\%
$24 \times / y$, interpoliert
0 ... $270^{\circ}=0$... 100%

Optokoppler
10 ... 30 V DC
$200 \ldots 1000 \mathrm{~ms}$
$>1000 \mathrm{~ms}$
~ 200 ms
$23 \times 78 \times 103 \mathrm{~mm}$
IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
$0,5 \mathrm{Nm}$
$\sim 100 \mathrm{~g}$
35 mm DIN rail 35 mm
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots .0^{\circ} \mathrm{C}$ (no condensation)

Supply Isolation Amplifier

Isolation Ampilifer With Reference Function

AD-TV 320 GS

Technical specifications
EMC
Product family standard Emitted interference
EN 61326-1 ${ }^{2}$
EN 55011, CISPR11 CI. B, Gr. 1
\section*{Electrical safety requirements}
Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input / output	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits electrical surge protection Input electrical surge protection Output Protection against overvoltage reverse polarity Power supply	

1) Values must be adviced by order
2) During checking, slight signal deviations are possible.

Block and wiring diagram

Eingangsbeschaltung / input wiring

Simulationsbeschaltung / simulation wiring

Dimensions

Simulation control

Isolation Amplifier

Bipolar High-current Isolation Amplifier

Description

The bipolar high-current isolation amplifier AD-TV 350 GVF is used for the galvanic isolation, transformation and amplification of bipolar current or voltage signals. The device allows the transmission of direct as well as alternating current signals up to a high frequency range. The highcurrent output can supply currents up to 200 mA . Thanks to the integrated 3 -way isolation, the input, output and supply voltage are high electrically isolated from each other. The efficient wide-range power supply of the AD-TV 350 GVF allows operation in a wide supply voltage range.

Application

Detection, transformation and amplification of fast changing bipolar signals (current or voltage). Directly controlling e.g. Control valves through the high current output.

Specific characteristics

- bipolar input
- bipolar high current output
- wide-range power supply

Business data

Article number

AD-TV 350 GVF
Please specify input and output data. Example. E: +/- 20 mA ; A: +/- 200 mA

Technical specifications	
Input current	
Measuring range	+/-20 mA
Input resistance	ca. 25 Ohm
Input voltage	
Measuring range	+/-10 V
Input resistance	ca. 100 kOhm
Output current	
Output range	+/-200 mA
Max. burden	40 Ohm @ 200 mA
Residual ripple	300μ Ass @ 200 mA
Output voltage	
Output range	+/-10 V
Min. burden	100 Ohm @ 10 V
Residual ripple	40 mVss @ 10 V
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$5 \mathrm{VA} / 3 \mathrm{~W}$
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	$70 \mathrm{ppm} / \mathrm{K}$
Cut-off frequency	ca. $1,5 \mathrm{kHz}(-3 \mathrm{~dB})$
Phase shift I/O	ca. $7,5{ }^{\circ}$
Power-on drift	ca. 0,1\%
Housing	
Dimensions (WxHxD)	$33 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 200 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Input / output	$2,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection

${ }^{1)}$ During checking, slight signal deviations are possible.

Bipolar High-current Isolation Amplifier

Isolation Amplifier

Isolation Amplifier (bipolar)

Description

The separation amplifier of type family AD-TV 810 serves the galvanic separation, conversion and amplification of bipolar signal sizes. The very high frequency range allows direct current as well as alternating current transfers. Input, output and the supply voltage are galvanically separated from each other. The output signal is independent of the connected load up to a maximum value. The limit frequency of the amplifier can be set at the front as an option.

Application

Recording, galvanic 3 -way separation, conversion and amplification of bipolar measuring sizes (voltage or current).

Specific characteristics

- 3dB bandwidth switch (0,1/0,5 / 1 / 2 / 20 kHz) are optionally available.

Business data

Order number

AD-TV 810 GS

Technical specifications	
Input current	
Measuring range	-20 ... 20 mA "
Input resistance	25 Ohm
Input voltage	
Measuring range	-10 ... $10 \mathrm{~V}^{\text {1] }}$ (max. +1/ 250V)
Input resistance	100 kOhm (10 kOhm / Volt)
Output current	
Output range	-20 ... 20 mA "
Max. burden	500 Ohm
Max. residual ripple	40μ Ass
Output voltage	
Output range	-10 ... 10 V "
Min. burden	1 kOhm
Max. residual ripple	20 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Input power AC/DC	3,5 VA / 1,7 W
Transmission behaviour	
Basic accuracy	< 0,2 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Frequency range	$0 . . .20 \mathrm{kHz}(-3 \mathrm{~dB})$
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 5{ }^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)

Isolation Amplifier

Isolation Amplifier (bipolar)

Technical specifications

EMC
Product family standard Emitted interference

EN 61326-1 ${ }^{2}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard
Overvoltage category
Pollution degree 2
Galvanic isolation, test voltages

\quad Input / output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$3,3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits	
Input	electrical surge protection Output
electrical surge protection	
Power supply	Protection against overvoltage reverse polarity

1) Values must be adviced by order.
2) During checking, slight signal deviations are possible

Block and wiring diagram

Dimensions

Supply Isolation Amplifier

Isolation Amplifier For Current Signals

Description

The supply isolation amplifier AD-STV 2 GX with its width of only 6.2 mm is used for galvanic isolation and amplification of transmitter signals ($4-20 \mathrm{~mA}$). The 2 - or 3 -wire transmitter is supplied directly by a galvanically isolated supply voltage. The input signal can be selected via DIP switches. Manual readjustment is required when switching the measuring range, the start and end values can be set using trimmers. Input, output and the supply voltage are galvanically separated from each other. A high packing density is achieved thanks to the narrow design. In combination with DIN rail connectors, the wiring effort is reduced considerably.

Application

Supply and data acquisition of 2 - or 3 -wire transmitters such as pressure transmitters, temperature transmitters, etc. with simultaneous amplification and galvanic isolation. Can also be used as a pure burden amplifier.

Specific characteristics

- narrow 6.2 mm construction
- Current and voltage input (switchable)
- easy configuration using DIP switches on the side of the device
- Supply via DIN rail connector

Business data

Order number

AD-STV 2 GX

Accessory

DIN-rail connector
AD-GX Connector

Technical specifications	
Input voltage	
Measuring range	0 ... 10 V
Input resistance	100 kOhm
Input current	
Measuring range	0 ... $20 \mathrm{~mA} ; 4$... 20 mA
Input resistance	50 Ohm
Transmitter supply	
Open-circuit voltage	<20 V
At 20 mA	$>14 \mathrm{~V}$
Current limit	$<30 \mathrm{~mA}$
Output current	
Output range	0 ... $20 \mathrm{~mA} ; 4 . .20 \mathrm{~mA}$
Max. burden	350 Ohm
Residual ripple	<0,1\%
Transmission behaviour	
Response time	< 50 ms (10-90\%)
Linearity error	< 0,1 \%
Temperature influence	< 70 ppm/K
Adjust begin	+/-22\%
Adjust end	+/-5\%
Supply	
Voltage range	$18 . .30 \mathrm{~V}$ DC
Nominal voltage	24 V DC
Power consumption	1,3 W
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail 35mm EN 50022
Type of protection	IP 20
Connection method	screw clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / 4 mm^{2} one wire)
Weight	$\sim 70 \mathrm{~g}$
Bolting torque terminals	0,5 Nm
Environmental conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{17}$	EN 61326-1
Emission ${ }^{2)}$	EN 55011, CISPR11 CI. A, Gr. 1
	mossble.
${ }^{2)}$ Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio reception in such environments.	
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	$1,5 \mathrm{kV}, 1 \mathrm{~min}$
Signal/auxiliary voltage	1,5 kV, 1 min

Display and operating elements

Designation	Value	Meaning
On	LED green	Power supply
Z	$+/-22 \%$	Adjust begin value
S	$+/-5 \%$	Adjust end value
$11 / I 2$	OFF $/$ OFF	Input: $0 \ldots 10 \mathrm{~V}$
$11 / \mathrm{I} 2$	OFF $/$ ON	Input: $0 \ldots 20 \mathrm{~mA}$

Block and wiring diagram

Dimensions

Supply Isolation Amplifier

Description

The supply isolation amplifier AD-STV 24 GVB serves the galvanic isolation and amplification of current signals in the range $0 / 4 \ldots 20 \mathrm{~mA}$. The transmitter is supplied by an isolated and limited supply voltage. Input, output and power supply are galvanically isolated. An integral, electronic power pack is designed with a voltage range of 11 to 30 VDC , also for 12 V battery voltage. In combination with the small shape, high packing densities can be achieved.

Application

Supply of 2 -wire transmitters like pressure or temperature transmitters and galvanic signal isolation.

Specific characteristics

-3-way isolation of input, output and supply

- Current transfer ratio 1:1, input = output
- Integrated current-limited power supply
- Suitable for battery voltage of 12VDC

Business data

Order number
AD-STV 24 GVB

Block and wiring diagram

Technical specifications

Input current
Measuring range Input resistance
Transmitter supply
Open-circuit voltage
At 20 mA
$<17 \mathrm{~V}$
Current limit
Output current
Output range
Max. burden
Transmission behaviour
Basic accuracy
Linearity error
Temperature influence
Response time
Supply
Voltage range
Power consumption

Housing

Dimensions (WxHxD) 13x110x134 mm
Type of protection
Connection method
Bolting torque terminals
Manner of fastening
Weight

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference
0 ... $20 \mathrm{~mA} ; 4$... 20 mA
50 Ohm
$<23 \mathrm{~V}$
$>17 \mathrm{~V}$
$<30 \mathrm{~mA}$

0 ... $20 \mathrm{~mA} ; 4$... 20 mA
< 300 Ohm
< 0,2 \%
< 0,2 \%
<+/-100 ppm/K
$<1 \mathrm{~ms}$
$11 \ldots 30$ V DC
1,4 W

IP 20
flex wire $/ 4 \mathrm{~mm}^{2}$ one wire)
$0,5 \mathrm{Nm}$
DIN rail 35 mm (EN 50022)
ca. 100 g
detachable terminal clamp $\left(2,5 \mathrm{~mm}^{2}\right.$

During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}, 1 \mathrm{~min}$
Signal/auxiliary voltage	$3 \mathrm{kV}, 1 \mathrm{~min}$

Dimensions

vertrieb@ad-messtechnik.de

Supply Isolation Amplifier

Description

The supply isolation amplifier AD-STV 24 GL serves the galvanic isolation and amplification of current signals in the range $0 / 4 \ldots 20 \mathrm{~mA}$. The transmitter is supplied by an isolated and limited supply voltage. Input, output and power supply are galvanically isolated. The electronic wide range power supply avoids an excessive heating. In combination with the small shape, high packing densities can be achieved.

Application

Supply of 2 - or 3 -wire transmitters like pressure or temperature transmitters and galvanic signal isolation.

Specific characteristics

- 3-way isolation of input, outtput and supply
- Current transfer ratio $1: 1$, input = output
- Integrated current-limited power supply

Business data

Order number
AD-STV 24 GL

Block and wiring diagram

Technical specifications

Input current

Measuring range Input resistance
Transmitter supply
Open-circuit voltage
At 20 mA
Current limit
Output current
Output range
Max. burden
Transmission behaviour
Linearity error
Temperature influence
Supply
Voltage range
Power consumption

Housing

Manner of fastening
Type of protection
Connector cross section
Weight
$0 \ldots 20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}$
50 Ohm
$<24 \mathrm{~V}$
$>17 \mathrm{~V}$
$<30 \mathrm{~mA}$

0 ... $20 \mathrm{~mA} ; 4$... 20 mA
< 400 Ohm
< 0,3 \%
< +/-100 ppm/K

Environmental conditions
Ambient temperature
Storage and transport
$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC
$\begin{array}{ll}\text { Product family standard } & \text { EN 61326-1 } \\ \text { Emitted interference } & \text { EN 55011, CISPR11 CI. B, Gr. } 1\end{array}$
During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard EN 61010-1
Galvanic isolation, test voltages
Input/output
$3,75 \mathrm{kV}, 1 \mathrm{~min}$
Signal/auxiliary voltage
$4 \mathrm{kV}, 1 \mathrm{~min}$

Dimensions

Supply Isolation Amplifier

Description

The supply isolation amplifier AD-STV 22 GVB serves the galvanic isolation and amplification of current signals in the range $0 / 4 \ldots 20 \mathrm{~mA}$. The transmitter is supplied by an isolated and limited supply voltage. Input, output and power supply are galvanically isolated. The electronic wide range power supply avoids an excessive heating. In combination with the small shape, high packing densities can be achieved.

Application

Supply of 2-wire transmitters like pressure or temperature transmitters and galvanic signal isolation.

Specific characteristics

- 3-way isolation of input, output and supply
- Current transfer ratio $1: 1$, input = output
- Integrated current-limited power supply

Business data

Order number

AD-STV 22 GVB

Technical specifications	
Input current	
Measuring range	0 ... 20 mA ; $4 \ldots 20 \mathrm{~mA}$
Input resistance	50 Ohm
Transmitter supply	
Open-circuit voltage	< 23 V
At 20 mA	$>17 \mathrm{~V}$
Current limit	< 30 mA
Output current	
Output range	0 ... 20 mA ; $4 \ldots 20 \mathrm{~mA}$
Max. burden	< 400 Ohm
Transmission behaviour	
Basic accuracy	< 0,2 \%
Linearity error	< 0,2 \%
Temperature influence	< +/-100 ppm/K
Response time	$<1 \mathrm{~ms}$
Supply	
Voltage range	$20 . .253$ V DC; $50 \ldots 253$ V AC
Power consumption	1,5 W, 3 VA
Housing	
Dimensions (WxHxD)	$13 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp $\left(2,5 \mathrm{~mm}^{2}\right.$ flex wire / $4 \mathrm{~mm}^{2}$ one wire)
Bolting torque terminals	0,5 Nm
Manner of fastening	DIN rail 35mm (EN 50022)
Weight	ca. 100 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
During electromagnetic disturbance	nges in output signal are possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	$3,75 \mathrm{kV}$, 1 min
Signal/auxiliary voltage	3 kV , 1 min

Dimensions

Block and wiring diagram

Supply Isolation Amplifier

AD-STV 22 GL

Description

The supply isolation amplifier AD-STV 22 GL serves the galvanic isolation and amplification of current signals in the range $0 / 4 \ldots 20 \mathrm{~mA}$. The transmitter is supplied by an isolated and limited supply voltage. Input, output and power supply are galvanically isolated. The electronic wide range power supply avoids an excessive heating. In combination with the small shape, high packing densities can be achieved.

Application

Supply of 2-wire transmitters like pressure or temperature transmitters and galvanic signal isolation.

Specific characteristics

- 3-way isolation of input, outtput and supply
- Current transfer ratio $1: 1$, input = output
- Integrated current-limited power supply

Business data

Order number

AD-STV 22 GL

Technical specification	
Input current Measuring range Input resistance	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA} \\ & 50 \mathrm{Ohm} \end{aligned}$
Transmitter supply Open-circuit voltage At 20 mA Current limit	$\begin{aligned} & <24 \mathrm{~V} \\ & >17 \mathrm{~V} \\ & <30 \mathrm{~mA} \end{aligned}$
Output current Output range Max. burden	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA} \\ & <400 \mathrm{Ohm} \end{aligned}$
Transmission behaviour Linearity error Temperature influence	$\begin{aligned} & <0,3 \% \\ & <+/-100 \mathrm{ppm} / \mathrm{K} \end{aligned}$
Supply Voltage range Power consumption	$\begin{aligned} & 20 \ldots 253 \text { V DC; } 50 \ldots 253 \text { V AC } \\ & 1,5 \mathrm{~W}, 3 \text { VA } \end{aligned}$
Housing Manner of fastening Type of protection Connector cross section Weight Bolting torque terminals	DIN rail 35mm EN 50022 IP 20 $2,5 \mathrm{~mm}^{2}$ flex wire, $4 \mathrm{~mm}^{2}$ one wire ca. 90 g 0,5 Nm
Environmental conditions Ambient temperature Storage and transport	$\begin{aligned} & -10 \ldots 50^{\circ} \mathrm{C} \\ & -10 \ldots 0^{\circ} \mathrm{C} \text { (no condensation) } \end{aligned}$
EMC Product family standard Emitted interference During electromagnetic disturbance minor	EN 61326-1 EN 55011, CISPR11 CI. B, Gr. 1 ges in output signal are possible.
Electrical safety requiremen Product family standard Overvoltage category Pollution degree	$\begin{aligned} & \text { EN 61010-1 } \\ & \text { II } \\ & 2 \end{aligned}$
Functional safety Safety Integrity Level (SIL) according to IEC 61508	SIL 2
Galvanic isolation, test volt Input/output Signal/auxiliary voltage	$3,75 \mathrm{kV}, 1 \mathrm{~min}$ 3 kV , 1 min

Supply Isolation Amplifier

Dimensions

Supply Isolation Amplifier

Description

The supply isolation amplifier AD-STV 40 GVC is designed for the galvanic isolation and amplification of transmitter signals ($0 / 4-20 \mathrm{~mA}$) and standard analog signals ($0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{VDC}$). When connecting a 2 - wire transmitter, it is powered directly through an electrically isolated and current limited power supply voltage. The standard signals $0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{~V}$ are freely selectable via switch or terminal on both the input and at the output. All ranges are calibrated fixed, but can be adjusted via front-trimmer. In addition, this device comes standard with a configuration interface AD-PC, with which the input and output measurement signal with the optional AD-Studio programming software in the range of max. 20 mA or 10 VDC can be freely programmed. The selected linear output signal follows the input size up to a limit independent of the connected load. Input, output and power supply voltage are galvanically isolated from each other with high insulation. An integral electronic wide range power supply with high efficiency prevents strong heating and allows high output loads.

Application

Galvanically isolated supply of a transmitter while separation, amplification or conversion of standard analog signals.

Specific characteristics

- All standard signals at the input and output are freely selectable
- Switchable zero and span trimmer
- Special signals can be parameterized via interface
- Weitbereichsnetzteil

Business data

Order number
AD-STV 40 GVC

Technical specifications	
Input current	
Measuring range	0 ... $20 \mathrm{~mA} ; 4 . . .20 \mathrm{~mA}$ "
Input resistance	ca. 50 Ohm
Resolution	10 Bit
Input voltage	
Measuring range	0 ... $10 \mathrm{~V} ; 2 \ldots 10 \mathrm{~V}{ }^{\text {² }}$
Input resistance	> 700 kOhm
Resolution	10 Bit
Transmitter supply	
Open-circuit voltage	ca. 26 V DC
Full load voltage	ca. 20 V DC
Current limit	ca. 30 mA
Input filter	
Setting range (via interface)	10 ms / filter value (0... 30000)
Output current	
Output range	0 ... 20 mA ; 4 ... 20 mA "
Max. burden	400 Ohm
Residual ripple	50μ Ass
Resolution	11 Bit
Output voltage	
Output range	0 ... $10 \mathrm{~V} ; 2 \ldots 10 \mathrm{~V}$ "
Min. burden	10 kOhm
Residual ripple	20 mVss
Resolution	11 Bit
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	3,9 VA / 1,9 W
Trimmer	
Trim range	ca. +/-20\%
Transmission behaviour	
Basic accuracy	< 0,3 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 70 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$18 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 130 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Supply Isolation Amplifier

Technical specifications

EMC
Product family standard Emitted interference

EN 61326-1 ${ }^{\text {2 }}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input / output	$2,5 \mathrm{kV}(1 \mathrm{~min})$.
Signal / supply unit	$3 \mathrm{kV}(1 \mathrm{~min})$.
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	Protection against overvoltage, overcurrent and reverse polarity

${ }^{1)}$ Special signals are configurable via the interface.
${ }^{2)}$ During electromagnetic disturbance minor changes in output signal are possible.

Block and wiring diagram

Function DIP-switch

Trimmer on
Factory setting, according to standard signals switches 1 and 2

Trimmer off
Activates the front trimmer for Offset (zero) and span
Adjustment range: $+/-20 \%$
DIP Factory settings, input and output signals such as switches 1-3
PC AD-studio setup position, Switches 1-3 functionless

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 400 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. Due to its current-sinking output, transmitter signals can also be separated or converted. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/- 1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- bipolar current or voltage output
- current sink output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier
AD-TV 400 GVD

Accessory (optional)

Operating module
USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring range	-50 ... + 50 mA DC
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100 \mathrm{~V}$ DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	19,5 V
Current limit	$\sim 25 \mathrm{~mA}$
Output current	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Output voltage	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Current sink output	
Current sink	0/4 ... 20 mADC
Max. voltage to be applied	35 V DC
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... $253 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,4 \mathrm{~W}$
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category
EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 400 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Isolation Amplifier

Description

The isolation amplifier AD-TV 420 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/-1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- 2 bipolar current or voltage output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier

Accessory (optional)

Operating module
USB programming adapter
Configuration software

Test

Modbus Protokoll

GTC

AD-TV 420 GVD

AD-VarioControl / AD-VarioConnect
AD-Variopass
70|AD-Studio
http://www.modbus.org/specs.php|Pr otokoll-Spezifikation der Modbus Organisation agb.pdf|Adamczewski AGB

Technical specifications

Input current	
Measuring range	$-50 \ldots+50 \mathrm{~mA} \mathrm{DC}$
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100$ V DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	24,5 V
Voltage at 20 mA	19,5 V
Current limit	~ 25 mA
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2 \% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	4,4 VA / 2,8 W
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference
EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

Display and operating elements

TV420 GVD
On
on
\square
\square

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,51 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$3,75 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 420 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Supply Isolation Amplifier

HART-Supply Isolation Amplifier

Description

The HART supply isolation amplifier AD-STH 40 GVC is designed for the galvanic isolation and amplification of transmitter signals ($0 / 4-20 \mathrm{~mA}$) and standard analog signals ($0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{VDC}$). When connecting a 2 - wire transmitter, it is powered directly through an electrically isolated and current limited power supply voltage. Because the AD-STH 40 GVC is permeable on the current path for FSK signals (Frequency Shift Keying, eg HART-protocol) also a smart HARTtransmitter can be connected at the input of the supply isolation amplifier. This HART transmitter can be programmed or read out from the output of the AD-STH 40 GVC using the integrated programming resistor. The standard signals $0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{~V}$ are freely selectable via switch or terminal on both the input and at the output. All ranges are calibrated fixed, but can be adjusted via front-trimmer. In addition, this device comes standard with a configuration interface ADPC, with which the input and output measurement signal with the optional AD-Studio programming software in the range of max. 20 mA or 10 VDC can be freely programmed. The selected linear output signal follows the input size up to a limit independent of the connected load. Input, output and power supply voltage are galvanically isolated from each other with high insulation. An integral electronic wide range power supply with high efficiency prevents strong heating and allows high output loads.

Application

Galvanically isolated supply of a smart HART-transmitter while separation, amplification or conversion of standard analog signals.

Specific characteristics

- All standard signals at the input and output are freely selectable
- FSK transmission (e.g. HART protocol)
- Switchable zero and span trimmer
- Special signals can be parameterized via interface

Business data

Order number
AD-STH 40 GVC

Technical specifications

Input current	
Measuring range	0 ... 20 mA ; 4 ... $20 \mathrm{~mA}{ }^{\text {1) }}$
Input resistance	ca. 75 Ohm
Resolution	10 Bit
Input voltage	
Measuring range	0 ... $10 \mathrm{~V} ; 2 \ldots 10 \mathrm{~V}{ }^{11}$
Input resistance	>700 kOhm
Resolution	10 Bit
Transmitter supply	
Full load voltage	ca. 20 V DC
Current limit	ca. 30 mA
Open-circuit voltage	ca. 26 V DC
Input filter	
Setting range (via interface)	10 ms / filter value (0 ... 30000)
Output current	
Output range	0 ... $20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}{ }^{\text {1 }}$
Max. burden	400 Ohm
Residual ripple	$50 \mu \mathrm{Ass}$
Resolution	11 Bit
Output voltage	
Output range	0 ... 10 V ; $2 . . .10 \mathrm{~V}{ }^{11}$
Min. burden	10 kOhm
Residual ripple	20 mVss
Resolution	11 Bit
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	3,9 VA / 1,9 W
Trimmer	
Trim range	ca. +/- 20 \%
Transmission behaviour	
Basic accuracy	< 0,3 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 70 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	18x110x134 mm
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 130 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Supply Isolation Amplifier

HART-Supply Isolation Amplifier

Technical specifications

EMC
Product family standard Emitted interference

EN 61326-1 ${ }^{2}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2
Galvanic isolation, test voltages

Input / output	$2,5 \mathrm{kV}(1 \mathrm{~min})$.
Signal / supply unit	$3 \mathrm{kV}(1 \mathrm{~min})$.
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	Protection against overvoltage, overcurrent and reverse polarity

${ }^{1)}$ Special signals are configurable via the interface.
${ }^{2)}$ During electromagnetic disturbance minor changes in output signal are possible.

Block and wiring diagram

Trimmer on
Factory setting, according to standard signals switches 1 and 2

Trimmer off
Activates the front trimmer for Offset (zero) and span
Adjustment range: $+/-20 \%$
DIP Factory settings, input and output signals such as switches 1-3
PC AD-studio setup position, Switches 1-3 functionless

Dimensions

Supply Isolation Amplifier

Description

The universal supply isolating amplifier AD-STV 300 GS converts the two active standard industrial signals $0 \ldots . .20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$, amplifies them and separates them galvanically. In addition, the device still has a current-limited supply voltage for the supply of two-wire transmitters. The signals are also available at the output. All combinations are possible. A switchover is not necessary. The signal combination from input to output is selected via the terminals.

Application

Amplification and adaptation of standard active signals and transmitter signals with easy conversion to a freely selectable output signal.

Specific characteristics

- Three signals freely selectable at the input and output
- current limited supply voltage of transmitters
- Galvanic isolation and amplification
- No mechanical switches necessary
- Input / output combination by clamping the desired signals
- No subsequent adjustment necessary
- Suppression of live zero signal (4 mA)
- Price / performance ratio allows for warehousing

Business data

Order number
AD-STV 300 GS

Supply Isolation Amplifier

AD-STV 300 GS

Dimensions

input wiring

Supply Isolation Amplifier

Isolation Ampilifer With Reference Function

Description

The set value buffer amplifier AD-TV 320 GS serves the galvanic separation, transformation and amplification of DC current and voltage signals ($0 / 4-20 \mathrm{~mA}$ or $0 / 2-10 \mathrm{~V}$). The device has additionally a transmitter supply and a set value function, which can be switched on. The activation of the set value function is carried out selectable with a brief depression of the key at the front or with a control signal (24 V active or contact) at the remote control input. Any output set value is set with the potentiometer at the front. Activation of zero trimmers and full trimmers is possible with longer depression of the set value key. With this, the signal magnitudes are adjustable in the range of $\pm 25 \%$. An integral electronic wide range power pack allows operation in a wide supply area.

Application

Transformation, burden amplification and galvanic disconnection of impressed transmitter signals, current signals and voltage signals with additional simulation function via set value specification, which can be activated.

Specific characteristics

- Restoration of the last device condition on supply connection (i.e. after power cut).
- Setting of a set value is carried out undamped and independent of the trimmer positions between $0 . .100 \%$ of the specified output range.
- Check back contact in set value condition (closer).
- The output signal remains even with missing input signal at the output start (i.e. 4 mA).
- Configurable via AD-STUDIO.

Business data

Order number
AD-TV 320 GS

Technical specifications

Transmitter supply

Feeding voltage
Current limit
Input current
Measuring range Input resistance
Input voltage
Measuring range
Input resistance

Output current

Output range
Max. burden
Max. residual ripple
Output voltage
Output range
Min. burden
Max. residual ripple

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Input power AC/DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time
Damping (optional)
Trimmer function
Linearization (optional)
Setpoint encoder
Remote control
Input
Voltage
Pulse controlled
Static
Front button

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Weight
Manner of fastening
Environmental conditions
Ambient temperature
Storage and transport
$26 \ldots 19 \mathrm{~V}(4 \ldots 20 \mathrm{~mA})$
$\sim 25 \mathrm{~mA}$

0 ... 20 mA "
50 Ohm

0 ... 10 V "
100 kOhm (10 kOhm / Volt)

0 ... 20 mA "
500 Ohm
40μ Ass

0 ... 10 V "
1 kOhm
20 mVss

50 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
230 V AC
20 ... 253 V DC
24 V DC
3,5 VA / 2,0 W
< 0,2 \%
$100 \mathrm{ppm} / \mathrm{K}$
50 ms
$0,1 \% / \mathrm{s}$ (linear max. ~950 s)
+/-25\%
$24 \times / y$, interpoliert
0 ... $270^{\circ}=0$... 100%

Optokoppler
10 ... 30 V DC
$200 \ldots 1000 \mathrm{~ms}$
$>1000 \mathrm{~ms}$
~ 200 ms
$23 \times 78 \times 103 \mathrm{~mm}$
IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
$0,5 \mathrm{Nm}$
$\sim 100 \mathrm{~g}$
35 mm DIN rail 35 mm
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots .0^{\circ} \mathrm{C}$ (no condensation)

Supply Isolation Amplifier

Isolation Ampilifer With Reference Function

AD-TV 320 GS

Technical specifications
EMC
Product family standard Emitted interference
EN 61326-1 ${ }^{2}$
EN 55011, CISPR11 CI. B, Gr. 1
\section*{Electrical safety requirements}
Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input / output	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits electrical surge protection Input electrical surge protection Output Protection against overvoltage reverse polarity Power supply	

1) Values must be adviced by order
2) During checking, slight signal deviations are possible.

Block and wiring diagram

Eingangsbeschaltung / input wiring

Simulationsbeschaltung / simulation wiring

Dimensions

Simulation control

Supply Isolation Amplifier

Description

The separation amplifier of type family AD-STV 810 serves the galvanic separation, conversion and amplification of unipolar signal sizes. The very high frequency range allows direct current as well as fast current transfers. Input, output and the supply voltage are galvanically separated from each other. The output signal is independent of the connected load up to a maximum value. The limit frequency of the amplifier can be set at the front as an option.

Application

Recording, galvanic 3 -way separation, conversion and amplification of unipolar measuring sizes (voltage or current).

Specific characteristics

- 3dB bandwidth switch (0,1/0,5 / 1 / 2 / 20 kHz) are optionally available

Business data

Order number
AD-STV 810 GS

Technical specifications

Transmitter supply

Feeding voltage
Current limit
Input current
Measuring range
Input resistance
Input voltage
Measuring range
Input resistance

Output current

Output range
Max. burden
Max. residual ripple
Output voltage
Output range
Min. burden
Max. residual ripple

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Input power AC/DC

Transmission behaviour	
Basic accuracy	$<0,2 \%$
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Frequency range	$0 \ldots .20 \mathrm{kHz}(-3 \mathrm{~dB})$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Supply Isolation Amplifier

\section*{Technical specifications
 EMC
 Product family standard Emitted interference
 Electrical safety requirements
 Product family standard
 Overvoltage category
 Pollution degree 2
 Galvanic isolation, test voltages
 | \quad Input / output | $3,75 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$. |
| :--- | :--- |
| Signal / supply unit | $3,3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$. |
| Protection circuits | electrical surge protection |
| Input | electrical surge protection
 Output |
| Power supply | Protection against overvoltage
 reverse polarity |
 Values must be adviced by order
) During checking, slight signal deviations are possible.}

Block and wiring diagram

Dimensions

Description

The SWT series of devices (AD-SWT 50 SO, AD-SWT 100 SO and ADSWT 200 SO) serves the measuring of large sinusoidal currents and simultaneous conversion to $4 . . .20 \mathrm{~mA}$ transmitter signal. The devices are designed in two-wire technology and can be operated in a wide range of voltages. Dependent on the amount of the primary current, the devices sink a proportional $4 \ldots 20 \mathrm{~mA}$ signal from the connected supply voltage. Due to the integral protection against polarization error and over-voltage, the transmitter are also protected against erroneous applications or transient over-voltages. The housing is designed in external clamp-on transformer format and therefore can be easily integrated into existing units.

Application

Measurings of large sinusoidal alternating currents, which, for instance, correspond to motor currents, pump currents or generator currents.

Attention: when fitting, it must be ensured that the ferrite surfaces of the SWT are free from dirt or fat residues through contact. Otherwise measuring value deviations or even error measurings are possible.

Specific characteristics

- Clamp-on transformer technology
- Extended supply voltage range
- 4 ... 20 mA transmitter signal
- Easy installation

Business data

Order number

AD-SWT 50 SO
AD-SWT 100 SO
AD-SWT 200 SO

Accessory

DIN rail holder
50 A AC Primärstrom
100 A AC Primärstrom
200 A AC Primärstrom

35 mm Normschiene

Technical specifications

Primary current	
Measurement method	inductive
Measuring range	0 ... 50/100/200 A AC
Max. conductor diameter	23 mm
Transmitter output	
Output range	$4 \ldots 20 \mathrm{~mA}$
Residual ripple	$50 \mu \mathrm{Ass}$
Transmitter-supply	
Voltage range DC	$10 . .30 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Transmission behaviour	
Basic accuracy	< 1 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	< 2 s (10... $90 \%)$
Housing	
Dimensions (WxHxD)	$50 \times 42 \times 82 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	1,5 mm² flex wire / $2,5 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	~ 200 g
Manner of fastening	Folding transducer housing
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{11}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Input / output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Output	electrical surge and reverse current protection

${ }^{1)}$ During checking, slight signal deviations are possible.

Ac ssalion convener
Current-transformer-transmitter
AD-SWT 50 SO AD-SWT 100 SO AD-SWT 200 SO
 Dimensions

AC Isolation Converter

Current Transformer Transmitter TRMS

Description

The SWT-TRMS series of devices (AD-SWT 50 SO-TRMS, AD-SWT 100 SO-TRMS and AD-SWT 200 SO-TRMS) serves the measuring of large AC currents and simultaneous conversion to $4 \ldots 20 \mathrm{~mA}$ transmitter signal. Because of the RMS measurement, the current consumption of non-linear consumers can be measured. Even strong distortions of the sinusoidal signal are easily measurable through the high sampling rate. The devices are designed in two-wire technology and can be operated in a wide range of voltages. Dependent on the amount of the primary current, the devices sink a proportional $4 . . .20 \mathrm{~mA}$ signal from the connected supply voltage. Due to the integral protection against polarization error and over-voltage, the transmitter are also protected against erroneous applications or transient over-voltages. The housing is designed in external clamp-on transformer format and therefore can be easily integrated into existing units.

Application

Measurement of large alternating currents, of linear or non-linear loads.
Attention: when fitting, it must be ensured that the ferrite surfaces of the SWT are free from dirt or fat residues through contact. Otherwise measuring value deviations or even error measurings are possible.

Specific characteristics

- Clamp-on transformer technology
- TRMS measurement
- Extended supply voltage range
- 4 ... 20 mA transmitter signal
- Easy installation

Business data

Order number

AD-SWT 50 SO-TRMS
AD-SWT 100 SO-TRMS
AD-SWT 200 SO-TRMS

Accessory

DIN rail holder
50 A AC primary current
100 A AC primary current

$$
200 \text { A AC primary current }
$$

Technical specifications

Primary current

Measurement method Sample rate

Max. measurable harmonic
Calculation method Short-term overload (1 s)
Permanent overload (24 h)
Measuring range
Max. conductor diameter

Transmitter output

Output range
Residual ripple

Transmitter-supply

Voltage range DC
Nominal voltage DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference

inductive

1 kHz (20 measurements / mains period)
$10(500 \mathrm{~Hz})$
root mean square TRMS
twenty times of the nominal value
120% of the nominal value
0 ... 50/100/200 A AC (50 Hz)
23 mm
4... 20 mA
$30 \mu \mathrm{Ass}$

10 ... 30 V DC
24 V DC
$<0,5 \%$ (at fundamental 50 Hz)
100 ppm/K
< 1 s (10... $90 \%)$
$50 \times 42 \times 82 \mathrm{~mm}$
IP 20
screw clamp
$1,5 \mathrm{~mm}^{2}$ flex wire / $2,5 \mathrm{~mm}^{2}$ one wire $0,5 \mathrm{Nm}$
~ 200 g
Folding transducer housing
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degre	

Pollution category
2
Safety measurement
Measurement category

61010-2-030
CAT III

Galvanic isolation, test voltages

Input / output
$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.) + insulation of the primary wire
Protection circuits
Output
electrical surge and reverse current protection
${ }^{1)}$ During checking, slight signal deviations are possible.
$\overline{\text { AC solation Conventer }}$
Current Transformer Transmitter TRMS
AD-SWT 50 SO-TRMS
AD-SWT 100 SO-TRMS
AD-SWT 200 SO

Block and wiring diagram

Dimensions

AC Isolation Amplifier

Description

The isolation amplifier AD-TV 515 GS serve as registry of sine wave alternating currents of sizes $0-1 \mathrm{~A} A C$ and $0-5 \mathrm{~A} A C$. The alternating current is galvanically separated and converted to an impressed OCstandard signal. The alternating currents (1 A or 5 A) are supplied to the unit via high current connectors, external shunts are therefore obsolete. For the measurement of larger currents, current transformers can be connected at any time. The output signals are amplified and are independent of the connected load up to a maximum value. The signals can be adapted to the application via a frontal trimmer.

Application

Adaptation of current transformer signals (1A AC or $5 \mathrm{~A} A C$) to $D C$ standard signals by simultaneous galvanic isolation and amplification.

Specific characteristics

- 1A AC current-input
- 5A AC current-input
- nominal-signal-output (0/4... 20 mA or $0 / 2 \ldots 10 \mathrm{~V}$)
- zero- and span-trimmer
- Allpower power supply

Business data

Order number
AD-TV 515 GS

AC Isolation Amplifier

AD-TV 515 GS

AC Isolation Amplifier

AD-TV 561 GS

Description

The isolation amplified AD-TV 561 GS converts sinus wave alternating voltages to analogue, optionally according to the effective values, output signals in up to three independent channels. With the measuring principle of real effective value measuring, distorted alternating signals can also be accurately captured. Input, output, the supply voltage and the channels amongst each other are galvanically isolated from each other. The output signals are independent of the connected load up to a maximum value.

Application

Capturing, galvanic isolation, conversion and amplification of alternating voltages in analogue signals. Optional effective value conversion, adaptation and amplification of output signals of voltage converters.

Business data

Order number
AD-TV 561 GS

Technical specifications	
Input	
Mess. range min/max	0 ... 30 V AC / $0 . . .600 \mathrm{VAC}^{1)}$
Input frequency	$50 \ldots 60 \mathrm{~Hz}$, Sinus Grundschwingung
Input resistance	$1 \mathrm{kOhm} / \mathrm{V}$ input voltage
Output current	
Max. output range	0/4 ... $20 \mathrm{~mA}{ }^{1)}$
Max. burden	500 Ohm
Output voltage	
Max. output range	$0 . .10 \mathrm{~V}^{1)}$
Min. burden	1 kOhm
Transmission behaviour	
Linearity error	$0,3 \%$ from the final value at fundamental
Rise time (10...90\%)	700 ms
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$
Ripple current	max. 50μ Ass
Ripple voltage	max. 100 mVss
Supply	
Supply voltage	20 ... 253 V DC / 50 ... 253 V AC
Max. power consumption	$1 \mathrm{~W} / 2,1 \mathrm{VA}$
Housing	
Manner of fastening	DIN rail 35mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. $2,5 \mathrm{~mm}^{2}$
Bolting torque screw terminals	0,5 Nm
Weight	ca. 110 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 6{ }^{\circ} \mathrm{C}$
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Input/output	4 kV (1 min)
Input/power-supply	4 kV (1 min)
Output/power-supply	3 kV (1 min)
${ }^{1}$ "Values must be advised by order	
${ }^{2}$) During electromagnetic disturbance minor	output signal are possible.

AC Isolation Amplifier

AD-TV 561 GS

AC Isolation Amplifier

AD-TV 581 GS

Description

The alternating current isolation amplifier AD-TV 581 GS detects the true RMS value of an alternating current. The input variable $0-1 \mathrm{AAC}$ or $0-5 \mathrm{~A}$ AC is here freely selectable via terminal. The alternating current is galvanic separated and transformed into an impressed DC standard signal 0/4-20 mA or 0/2-10 VDC. The zero point and the range of the measuring signal can be adjusted with trimmers at the front. The trimmers can be activated via a wire bridge. The start of the output range can be modified via a wire bridge from 0 to 4 mA or from 0 to 2 V , exceeding the measuring range or falling below the measuring range is indicated with a flashing LED at the front of the device. The device can be configured with a PC software via the interface on the front interface.

Application

Freely configurable transformation of AC current signals to DC standard signals, with simultaneous galvanic separation.

Specific characteristics

- true-rms
- zero point trimmer and final value trimmer can be switched on
- programming via optional AD-Studio Configuration software possible

Business data

Order number
AD-TV 581 GS

Technical specifications	
Input current	
Measuring range	$0 \ldots 1$ A AC / $0 \ldots 5 \mathrm{AAC}^{1)}$
Input frequency	40 ... 400 Hz
Overload temporary	+ 100% (3 s)
Overload permanent	+ 50 \%
Output current	
Max. output range	$0 . . .20 \mathrm{~mA}^{1)}$
Max. burden	500 Ohm
Output voltage	
Max. output range	$0 . .10 \mathrm{~V}^{1)}$
Min. burden	10 kOhm
Transmission behaviour	
Trim range	+/-20 \% ${ }^{1)}$
Linearity error	0,5\% of full scale
Measuring time	20 ms (1 Period)
Rise time (90\%)	$200 \mathrm{~ms}(\mathrm{min.} 60 \mathrm{~ms})^{3)}$
Response time	$220 \mathrm{~ms}(\mathrm{min.} 80 \mathrm{~ms})^{3)}$
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$
Supply	
Supply voltage	$20 . .253$ V DC / 50 ... 253 V AC
Max. power consumption	1,2 W/2,2 VA
Housing	
Manner of fastening	DIN rail 35mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. $2,5 \mathrm{~mm}^{2}$
Bolting torque screw terminals	0,5 Nm
Weight	ca. 110 g
Environmental conditions	
Ambient temperature	$-10 \ldots 5{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 6{ }^{\circ} \mathrm{C}$
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Input/output	4 kV (1 min)
Input/power-supply	4 kV (1 min)
Output/power-supply	3 kV (1 min)
${ }^{1)}$ Different values must be advised by order	
${ }^{2}$) During electromagnetic disturbance minor ch	anges in output signal are possible.
${ }^{3}$ F Filter 5 (Filer 0).	

AC Isolation Amplifier

AD-TV 581 GS

Dimensions

AC Isolation Amplifier

Description

The alternating voltage isolation amplifier AD-TV 591 GS detects the true RMS value of an alternating voltage. The input variable $0-250 \mathrm{~V}$ AC or $0-450 \mathrm{~V}$ AC is here freely selectable via terminal. The alternating voltage is galvanic separated and transformed into an impressed DC standard signal 0/4-20 mA or 0/2-10 VDC. The zero point and the range of the measuring signal can be adjusted with trimmers at the front. The trimmers can be activated via a wire bridge. The start of the output range can be modified via a wire bridge from 0 to 4 mA or from 0 to 2 V , exceeding the measuring range or falling below the measuring range is indicated with a flashing LED at the front of the device. The device can be configured with a PC software via the interface on the front interface.

Application

Freely configurable transformation of AC voltage signals to DC standard signals, with simultaneous galvanic separation.

Specific characteristics

- true-rms
- zero point trimmer and final value trimmer can be switched on
- programming via optional AD-Studio Configuration software possible

Business data

Order number
AD-TV 591 GS

Technical specifications

Input voltage

Measuring range	$0 \ldots 250 \mathrm{VAC} / 0 \ldots 450 \mathrm{~V} \mathrm{AC}^{1)}$
Input frequency	$40 \ldots 400 \mathrm{~Hz}$

Output current
Max. output range
Max. burden
0 ... $20 \mathrm{~mA}^{1)}$
500 Ohm
Output voltage
Max. output range
Min. burden
$0 . .10 \mathrm{~V}^{1)}$
Transmission behaviour
Trim range
Linearity error
Measuring time
Rise time (90%)
Response time
Temperature influence

Supply

Supply voltage
Max. power consumption
20 ... 253 V DC / 50 ... 253 V AC
1,2 W/2,2 VA

Housing

Manner of fastening DIN rail 35 mm (EN 50022)
Type of protection
IP 20
Connector cross section
max. $2,5 \mathrm{~mm}^{2}$
Bolting torque screw terminals $0,5 \mathrm{Nm}$
Weight
ca. 120 g

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Input/output	4 kV (1 min)
Input/power-supply	4 kV (1 min)
Output/power-supply	3 kV (1 min)
${ }^{\text {1) }}$ Different values must be advised by order	
${ }^{2}$) During electromagnetic disturbance minor changes in output signal are possible.	
${ }^{3}$ F Filter 5 (Filler 0).	

AC Isolation Amplifier

AD-TV 591 GS

Dimensions

AC Isolation Amplifier

AC-Isolation Amplifier/Limit Switch AD-TV 588 GVD

Description

The AD-TV 588 GVD is used for measuring the rms value of alternating current via a built-in current transformer up to 5A or via an external clamp on / split core current transformer up to 600A. The detected current is outputted as a galvanically isolated standard current signal in the range 0 to 20 mA and as a standard voltage signal in the range 0 to 10 volts. An additional relay output can indicate a limit value or a window. All parameters such as range, output range, relay functions, limiting values, etc. can be freely set via the configuration software.

Application

Measuring the current of single-phase loads up to 600A. Monitoring of current consumption to certain limits with hysteresis threshold by limit function. Monitoring a certain range of the current consumption by window function.

Specific characteristics

- Detection of the rms value of alternating currents up to 600A
- Current and voltage output can be used simultaneously
- Relay output, NO
- Wide range power supply. Supply with 24V DC or 230V AC available
- External clamp on/split core current transformers as accessory available
- Configuration information, such as limits, input current, etc. can be adjusted by the customer via configuration software or be specified when ordering
- Operating module as an accessory

Business data

Order number

AC Isolation Amplifier
AD-TV 588 GVD

Accessory (optional)

Split core current transformer
Display/control module
USB programming adapter
Configuration software
AD-KSW 5/50/100/200/400/600 A AC
AD-VarioControl, VarioConnect
AD-VarioPass
AD-Studio

Technical specifications

Input current directly

Measuring range 1 A
Measuring range 5 A
Remark
0 ... 1 A AC
0 ... 5 A AC
DO NOT CONFUSE THE INPUT OF
THE CLAMP ON CURRENT TRANSFORMER.

Current input via Clamp on Current Transformer

Measuring range, Re, Terminals Measuring range, Re,	$0 \ldots 1,66 \mathrm{~mA}$
Terminals	
Measuring range, Re,	$0 \ldots 16,6 \mathrm{~mA}$
Terminals	$0 \ldots 33,3 \mathrm{~mA}$
Measuring range, Re,	(alle AD-KSW Terminals
All current inputs	50 Hz
Rated frequency	$40 \ldots 400 \mathrm{mz}$
Frequency range	2 kHz
Sampling	

All signal outputs

Simultaneous use

Output current
Maximum output range $0 \ldots 20 \mathrm{~mA}$
Resolution
Max. burden
$\sim 10 \mathrm{uA}$
Output voltage
Maximum output range $0 \ldots 10 \mathrm{~V}$
Resolution
$\sim 5 \mathrm{mV}$
Min. burden
1 kOhm

Relay output

Maximum switching load AC
Maximum switching load DC
Contact construction
Switching operations
mechanical
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1 \quad 600.000$
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4 \quad 200.000$
At $24 \mathrm{~V} / 1$ A DC $\quad 200.000$

Transmission behaviour

Maximum linearity error
Rise time 0.. 90%
Temperature influence

Supply

Voltage range AC
Nominal voltage $A C$
Voltage range DC
Nominal voltage DC
Power consumption AC / DC

250 V, 2 A
$50 \mathrm{~V}, 2 \mathrm{~A}$
closing contact
10.000.000

0,5 \% of full scale
200 ms
+/- $100 \mathrm{ppm} / \mathrm{K}$

50 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
230 V AC
20 ... 253 V DC
24 V DC
3 VA / 1,5 W

AC Isolation Amplifier

AC-Isolation Amplifier/Limit Switch

Technical specifications

Housing

Dimensions (W×HxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Manner of fastening	DIN rail 35 mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. $2,5 \mathrm{~mm}^{2}$
Bolting torque screw terminals $0,5 \mathrm{Nm}$ Weight $\sim 120 \mathrm{~g}$ Environmental conditions Operation $-10 \ldots 50^{\circ} \mathrm{C}$ Storage, transport $-10 \ldots 60^{\circ} \mathrm{C}$.	

EMC

Product family standard
Emitted interference
EN 61326-1 "
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
Rel: LED for relay in red
on - relay activated
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Dimensions

Modbus/RTU Communication

The optional AD-VarioConnect operating module is required for communication via Modbus/RTU. It has an RS-485 interface. The data format is $19200, e, 8,1$. The slave address is 1 . These settings can be changed using the AD-VarioConnect operating module. The following data can be communicated.

Start address	Number of registers	Name	Unit	Data type	read	write
40701	2	Scaled input	A AC	float	1	0
40801	2	Output signal current	mA	float	1	1
40803	2	Output signal voltage	V	float	1	1

Use of the Adamczewski AD-KSW XXX folding current transformers

All AD-KSW XXX folding current transformers provide an output current of 33.33 mA regardless of the input current. Therefore, when using these transformers, ALWAYS use input terminals 7/8.

Power Measurement

Split Core Current Transformer

Description

With the clamp on current transformers AD-KSW50, AD-KSW100, ADKSW200, AD-KSW400 and AD-KSW600 high currents can be measured without contact in connection with the power measurement devices from the Adamczewski GmbH . There are transformers for the range up to 600 A AC available. By their small size they can be easily mounted on the current carrying conductors and can therefore be mounted easily to existing systems without disconnecting the main cable. The secondary side mA-currents are not critical and can be wired over several meters. By the internal voltage limitation there are no high voltages on the secondary side possible.

Application

Measurement of high currents, power or energy in plants or buildings in connection with the measurement technology from the Adamczewski GmbH.

Specific characteristics

- non-contact measurement of high currents
- no disconnection of the main cable during installation
- uncritical mA-signals at the secondary side of the transformer

Business data

Order number

AD-KSW 50 SO
AD-KSW 100 SO
AD-KSW 200 SO
AD-KSW 400 SO
AD-KSW 600 SO

Power measurement transducer

AD-LU 25 GT

power measurement transducer

Compatible transducer

AD-LU 35 GT
AD-LU 55 GT
AD-LU 680 GA
50 A AC primary current 100 A AC primary current 200 A AC primary current 400 A AC primary current 600 A AC primary current power measurement transducer

Technical specifications

Max. primary conductor diameter

AD-KSW50	23 mm
AD-KSW100	23 mm
AD-KSW200	23 mm
AD-KSW400	35 mm
AD-KSW600	35 mm

Primary current
AD-KSW50
AD-KSW100
AD-KSW200
AD-KSW400
AD-KSW600

Secondary current

All transformer types
Nominal load
All transformer types $\quad 7$ Ohm
Dimension
AD-KSW50
AD-KSW100
AD-KSW200
AD-KSW400
AD-KSW600

Weight

AD-KSW50 ca. 180 g

AD-KSW100
AD-KSW200
AD-KSW400
AD-KSW600

Accuracy

All transformer types

Phase error

 All transformer types
Secundary wires

Connections
Cable length
Frequency range
All transformer types
Rated frequency
All transformer types
Isolation-voltage
All transformer types
Environmental conditions
Operation
Storage and transport

Certifications

All transformer types

0 ... 50 A AC
0 ... 100 A AC
0 ... 200 A AC
0 ... 400 A AC
0 ... 600 A AC

0 ... 33 mA AC
$34,4 \times 45 \times 65,5 \mathrm{~mm}$ $34,4 \times 45 \times 65,5 \mathrm{~mm}$ $34,4 \times 45 \times 65,5 \mathrm{~mm}$ $38,4 \times 57 \times 81,5 \mathrm{~mm}$ $38,4 \times 57 \times 81,5 \mathrm{~mm}$
ca. 180 g
ca. 180 g
ca. 180 g
ca. 350 g
ca. 350 g
$<0,5 \%$
1° (primary to secondary)
white: k , black: ।
ca. 50 cm

50 ... 400 Hz
$50 / 60 \mathrm{~Hz}$

2500 V AC (1 min) + cable insulation
$-10 \ldots 60^{\circ} \mathrm{C}$
$-20 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

CE, UL, RoHS

Power Measurement

Split Core Current Transformer

AD-KSW xx SO

Block and wiring diagram

Bitte Montagerichtung beachten
K: Netzseite / Quelle
L: Verbraucherseite / Last
Please note the mounting direction
K: network side / Source
L: consumer side / load

Dimensions

Power Measurement

Description

With the AD-HSH xxx WG it is possible to mount three Adamczewski split-core current transformers AD-KSW 50 WG, AD-KSW 100 WG or AD-KSW 200 WG together on the DIN rail. The output currents (max 33.33 mA) are provided via terminals. The AD-HSH-S is supplied fully assembled, therefore the size of the folding current transformer must be specified when ordering.

Application

Mounting of split-core current transformers on the DIN rail.

Business data
Order number
AD-HSH 50 WG;AD-HSH 100 WG;AD-HSH 200 WG

Technical specifications

Housing	
Dimensions (WxHxD)	134,9x77x91 mm
Type of protection	IP 20
Connection method	spring clamp terminals
Terminals, wire cross section	$1,5 \mathrm{~mm}^{2}$ flex wire / $2,5 \mathrm{~mm}^{2}$ one wire
Weight	$\sim 520 \mathrm{~g}$ (incl. split-core transformers)
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 60^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Elevation	max. 2000 m
Safety measurement	61010-2-030
Measurement category	CAT III
Max. permanent working voltage	300 VAC
Galvanic isolation, test voltages	
Input / output	2500 V AC (1 min) + cable insulation
Protection circuits	
Output	internal voltage limitation with open secondary lines

${ }^{1)}$ During checking, slight signal deviations are possible.

Dimensions

Current Transformer

AD-SW 3GL
(3-channel)

Description

With the current converter AD-SW 3 GL up to three independent current magnitudes can be converted to a DC voltage of $\pm 0-10 \mathrm{~V}$. The amplitude value (sinus) or the true effective value (True RMS) can be presented
Inputs, outputs and supply voltage are galvanically separated from each other with high insulation. The outputs refer to a common mass. An integral electronic wide range power pack with high efficiency prevents strong increase in heat

Application

For conversion of up to 3 AC currents to an amplitude linear or effective value relevant voltage.

Technical data

construction type
power-supply
power consumption
input
input overload
output
output load
band width
inearity error
effect of temperature
insulation test voltage
protection systems

CE-conformity
ambient-temperature
switchboard housing ALLPOWER20-253VAC/DC internal galvanical separated approx. 2 VA resp. 1 W
$3 x$ current AC (max. 10A)
as bar-type transformer
(IEC 688)
$20 \times I_{\text {nenn }}$ to 1 sec., $125 \% I_{\text {nenn }}$ continual $3 \times 0-10 \mathrm{~V}$, common mass input following or RMS
limited to 11V
min. 2 kOhm each channel
approx. 2 kHz
< 0,5\%
< 0,003\%
input/output: 8 kV RMS
signal/power-supply: 4 kV RMS
input/output: against over-voltage
confusing the poles, over-current power-supply: against over-current, over-voltage, over-temperature
EN 50081-2; EN 50082-2
0.. $+50^{\circ} \mathrm{C}$
(*) values must be defined by order

Connections and dimensions: AD-SW 3 GL

Input $3 x$ current AC (max. 10A) as bar-type transformer Output 3x voltage (max. 10V)

weight 160 g
protection: IP 20
manner of fastening:
attachment rail: NS35/7,5; NS 32
connection data:
fine-wire: $\quad 2,5 \mathrm{~mm}^{2}$
single-wire: $4 \mathrm{~mm}^{2}$
max. voltage: 250 V ~

AC Isolation Amplifier

AD-SWK 3 WG

Description

With the current converter AD-SWK 3 WG up to three independent alternating current magnitudes can be converted to three alternating voltage of $\pm 0-10 \mathrm{~V}$. The frequency-response curve at the output is equivalent to input. Inputs, outputs and supply voltage are galvanically separated from each other with high insulation. The outputs refer to a common mass. An integral electronic wide range power pack with high efficiency prevents strong increase in heat.

Application

For conversion of up to three alternating currents to three alternating voltage

Business data

Order number
AD-SWK 3 WG

Technical specifications	
Input	
Measuring range	0 ... 5A AC (max. 0 ... 10 A AC)
Max. measurable harmonic	80 (4 kHz)
Ct size (inside diameter)	$<8 \mathrm{~mm}$
Permanent overload	120% of the rated value
Temporary overload (1s)	rated value $\times 20$
Output	
Output range	0 ... 7,07 V AC (10 V amplitude)
Min. burden	10 kOhm
Accuracy	
Unit	<0,5 \%
Temperature influence	<100 ppm / K
Phase backfill Input/Output	output 3,6 ${ }^{\circ}$ lagging
Supply	
Supply voltage AC	50 ... 253 V AC
Nominal voltage AC	230 V AC
Supply voltage DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	1,8 VA / 0,8 W
Housing	
Connection method	spring force terminal
Connection method input	split core current transformer
Manner of fastening	35 mm DIN rail 35 mm
Dimensions (WxHxD)	$138 \times 80 \times 64(88) \mathrm{mm}$
Weight	280 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
During checking, slight signal	deviations are possible
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	2,2 kV AC + over voltage cable
Signal/auxiliary voltage	3 kV RMS
Protective systems	
Input/output	over voltage and over current
Power supply	over voltage, over current and over temperature

AC Isolation Amplifier

AC Isolation Amplifier

AD-SWK 6 WG

Description

With the current converter AD-SWK 6 WG up to three independent alternating current magnitudes can be converted to three alternating voltages of $0-10 \mathrm{~V}$. The frequency-response curve at the output is equivalent to input. There are 3 switchable input ranges available. Inputs, outputs and supply voltage are galvanically separated from each other. The outputs refer to a common mass. An integral electronic wide range power pack with high efficiency prevents strong increase in heat.

Application

For conversion of up to three alternating currents to three alternating voltages

Business data

Order number
AD-SWK 6 WG

Technical specifications

Input
Measuring range $0 \ldots 1,5 / 2$ / 3 A AC amplitude switchable
Max. measurable harmonic Ct size (inside diameter)
Permanent overload Temporary overload (1s)
$80(4 \mathrm{kHz})$
$<8 \mathrm{~mm}$
120% of the rated value
rated value $\times 20$

Output

Output range
Min. burden
0 ... 10 V AC amplitude ($7,07 \mathrm{~V}$ ACeff)
10 kOhm

Accuracy

Unit
Temperature influence

Phase backfill Input/Output
<0,5 \%
< 100 ppm / K
output $3,6^{\circ}$ lagging

Supply

Supply voltage AC
Nominal voltage AC
Supply voltage DC
Nominal voltage DC
Power consumption AC / DC

Housing

Connection method input
Connection method
Manner of fastening
Dimensions (WxHxD)
Weight
Environmental conditions
Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
During checking, slight signal deviations are possible

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Galvanic isolation, test voltages

Input/output
Signal/auxiliary voltage
Working voltage

Protective systems

Input/output over voltage and over current
Power supply
$2,2 \mathrm{kV} \mathrm{AC}+$ Test voltage of the cable of minimum 1000 V
3 kV RMS
300 V AC/DC over voltage, over current and over temperature

AC Isolation Amplifier

Display and operating elements

Block and wiring diagram

On: LED for operating display in green
Selection of input: Switch for the input ranges

Dimensions

Isolation Converter

AD-TW 41 GM

Description

The separation converter serves the galvanic separation of impressed currents. It obtains its auxiliary energy form the input signal. The connection of an additional auxiliary voltage is not necessary. The output current is independent of the connected load up to the maximum value. The isolating transformer is also available as a TWB variant, which does not interrupt the input current if its output current is interrupted (bypass function).

Application

Economic separation of computer inputs, protection of sensitive units against potential delay, galvanic decoupling in complex measuring units. Optional available FSK-capable (HART® Communications Protocol). Caution: with open output the input becomes high-impedance! To avoid this behavior, the version can be used with bypass.

Business data

Order number

AD-TW 41 GM
AD-TWB 41 GM
AD-TWH 41 GM
AD-TW 41 ST
AD-TWB 41 ST
design GM
design GM with Bypass-Function
design GM, FSK-transparency (HART®-Protokoll)
design ST
design ST with Bypass-Function

Technical specifications	
Input current	
Measuring range	$0 \ldots 20 \mathrm{~mA}$
Input voltage	<25 V
Voltage drop device	<2,5 V
Output current	
Output range	$0 \ldots 20 \mathrm{~mA}$
Max. burden	1000 Ohm
Burden error	-0,03\% / 100 Ohm
Residual ripple	0,5 \% (1000 Ohm; 20 mA)
Transmission behaviour	
Basic accuracy	< 0,2 \%
Input / output	1:1
Temperature influence	$50 \mathrm{ppm} / \mathrm{K}$
Response time	~ 20 ms
Transmission frequency	500 Hz (500 Ohm)
Housing GM	
Dimensions (WxHxD)	$15 \times 42,5 \times 102 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 60 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Housing ST	
Dimensions (WxHxD)	$15 \times 42,5 \times 102 \mathrm{~mm}$
Type of protection	IP 20
Pluggable	
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 50 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{11}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Galvanic isolation	
Base isolation, functional separation	
Working voltage	50 VDC
Test voltages input / output	$500 \mathrm{~V}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.	

Isolation Converter

Block and wiring diagram

GM Isolation of active current signals

Isolation of transmitter signals

\qquad
ST Isolation of active current signals

Isolation of transmitter signals

Dimensions

Isolation Converter

Description

The separation converter serves the galvanic separation of impressed currents. It obtains its auxiliary energy form the input signal. The device is available as a single-channel (AD-TW 201 GS) or dual-channel (ADTW 202 GS) version. The connection of an additional auxiliary voltage is not necessary. The output current is independent of the connected load up to the maximum value. The isolating transformer is also available as a TWB variant, which does not interrupt the input current if its output current is interrupted (bypass function).

Application

Economic separation of computer inputs, protection of sensitive units against potential delay, galvanic decoupling in complex measuring units.

Business data

Order number

AD-TW 201 GS
AD-TW 202 GS
AD-TWB 201 GS
AD-TWB 202 GS
one channel
two channels
einkanalig mit Bypass
zweikanalig mit Bypass

Technical specifications

Input current

Measuring range $0 \ldots 20 \mathrm{~mA}$
Input voltage $<25 \mathrm{~V}$

Drop voltage $<2,5 \mathrm{~V}$
Oscillation current $<80 \mu \mathrm{~A}$
Output current
Output range
0 ... 20 mA
Max. burden
Burden error
Residual ripple
500 Ohm
-0,03\% / 100 Ohm
0,5 \% (500 Ohm; 20 mA)

Transmission behaviour

Basic accuracy
< 0,3 \%
Input / output
Temperature influence
Response time
Transmission frequency

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Weight
1:1
$50 \mathrm{ppm} / \mathrm{K}$
~ 20 ms
500 Hz (500 Ohm)

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
$20 \times 30 \times 16,5 \mathrm{~mm}$
IP 20
screw clamp
max. 150 g
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{1)}$
EN 55011, CISPR11 CI. B, Gr. 1

Galvanic isolation

Base isolation, functional separation
Working voltage 50 V DC
Test voltages input / output $500 \mathrm{~V}, 50 \mathrm{~Hz}$ (1 min.)
${ }^{1)}$ During checking, slight signal deviations are possible.

Isolation Converter

Dimensions

Isolation Converter

Description

The separation converter serves the galvanic separation of impressed currents. It obtains its auxiliary energy form the input signal. The connection of an additional auxiliary voltage is not necessary. The output current is independent of the connected load up to the maximum value.

Application

Economic separation of computer inputs, protection of sensitive units against potential delay, galvanic decoupling in complex measuring units. The device is designed in plug-in module technology.

Business data

Order number
AD-TW 201 ST

Technical specifications

Input current

Measuring range $0 \ldots 20 \mathrm{~mA}$

Input voltage $<25 \mathrm{~V}$
Drop voltage $<2,5 \mathrm{~V}$
Oscillation current $<80 \mu \mathrm{~A}$
Output current
Output range $0 \ldots 20 \mathrm{~mA}$

Max. burden 500 Ohm
Burden error
Residual ripple
-0,03\% / 100 Ohm
0,5 \% (500 Ohm; 20 mA)

Transmission behaviour

Basic accuracy $<0,3 \%$
Input / output
1:1
Temperature influence $\quad 50 \mathrm{ppm} / \mathrm{K}$
Response time
Transmission frequency

Housing

Dimensions (WxHxD) 20x30x16,5 mm
Type of protection
Connection method
Weight
IP 20
Steckmodul
~ 80 g

Environmental conditions

Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC
Product family standard
Emitted interference
EN 61326-1 ${ }^{1}$
EN 55011, CISPR11 CI. B, Gr. 1

Galvanic isolation

Base isolation, functional separation
Working voltage 50 V DC
Test voltages input / output
$500 \mathrm{~V}, 50 \mathrm{~Hz}$ (1 min.)
${ }^{1)}$ During checking, slight signal deviations are possible.

Isolation Converter

Block and wiring diagram

Dimensions

Isolation Converter

Description

The separation converter serves the galvanic separation of impressed currents. It obtains its auxiliary energy form the input signal. The connection of an additional auxiliary voltage is not necessary. The output current is independent of the connected load up to the maximum value.

Application

Economic separation of computer inputs, protection of sensitive units against potential delay, galvanic decoupling in complex measuring units.

Business data

Order number
AD-TW 201 MO

Block and wiring diagram

Isolation of active current signals

Technical specifications

Input current

Measuring range $0 \ldots 20 \mathrm{~mA}$
Input voltage $<25 \mathrm{~V}$

Drop voltage $<2,5 \mathrm{~V}$
Oscillation current $<80 \mu \mathrm{~A}$
Output current
Output range $0 \ldots 20 \mathrm{~mA}$

Max. burden 500 Ohm
Burden error
Residual ripple
Transmission behaviour

Basic accuracy	$<0,3 \%$
Input / output	$1 \cdot 1$

Input / output $1: 1$
Temperature influence $\quad 50 \mathrm{ppm} / \mathrm{K}$
Response time ~ 20 ms
Transmission frequency

Housing

Dimensions (WxHxD) 20x30×16,5 mm
Type of protection
Connection method
Weight
IP 20
soldering pins
~ 25 g

Environmental conditions

Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard
Emitted interference

EN 61326-1 ${ }^{1)}$
EN 55011, CISPR11 CI. B, Gr. 1

Galvanic isolation

Base isolation, functional separation
$\begin{array}{ll}\text { Working voltage } & 50 \mathrm{~V} \mathrm{DC} \\ \text { Test voltages input / output } & 500 \mathrm{~V}, 50 \mathrm{~Hz} \text { (1 min.) }\end{array}$
${ }^{1)}$ During checking, slight signal deviations are possible.

Dimensions

Isolation Converter

Description

The passive AC current separation transducer serve the conversion of AC currents of magnitudes 0-1 A AC or 0-5 A AC in an impressed DC current of $0-20 \mathrm{~mA}$. The galvanically separated output signal is, up to a maximum value, independent of the connected burden. The separation transducer does not require an auxiliary energy, the necessary energy is gained from the measuring signal.

Application

Remote transmission of current transducer signals, galvanic separation and coupling to systems with 0-20 mA inputs.

Specific characteristics

- for 1 A AC or 5 A AC current transducer signals
- galvanically separated output 0-20 mA
- no auxiliary energy required
- connection terminals can be pulled off

Business data

Order number

AD-TW 21 GVD	input $0 \ldots 1$ A AC
AD-TW 25 GVD	input $0 \ldots 5$ A AC

Block and wiring diagram

Technical specifications

Input current

AD-TW 21 GVD	$0 \ldots 1$ A AC $(50 \mathrm{~Hz}$ Sinus $)$
AD-TW 25 GVD	$0 \ldots 5$ A AC $(50 \mathrm{~Hz}$ Sinus $)$

Output current
Max. output range $0 \ldots 20 \mathrm{~mA}$
Max. burden
400 Ohm
Load influence
Transmission behaviour
Basic accuracy
Temperature influence
Response time

Supply

Passive, no power supply required!
Self-consumption via input $\sim 1,6 \mathrm{VA}$
signal
Housing
Manner of fastening DIN rail 35mm (EN 50022)
Type of protection IP 20
Connector cross section max. $2,5 \mathrm{~mm}^{2}$
Weight
~ 285 g
Environmental conditions

Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard ${ }^{2)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 CI. B, Gr. 1
${ }^{2}$) During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages
Signal/auxiliary voltage $\quad 2 \mathrm{kV}(1 \mathrm{~min})$
Protective systems
Input/output over voltage and over current

Dimensions

Description

The SWT series of devices (AD-SWT 50 SO, AD-SWT 100 SO and ADSWT 200 SO) serves the measuring of large sinusoidal currents and simultaneous conversion to $4 . . .20 \mathrm{~mA}$ transmitter signal. The devices are designed in two-wire technology and can be operated in a wide range of voltages. Dependent on the amount of the primary current, the devices sink a proportional $4 \ldots 20 \mathrm{~mA}$ signal from the connected supply voltage. Due to the integral protection against polarization error and over-voltage, the transmitter are also protected against erroneous applications or transient over-voltages. The housing is designed in external clamp-on transformer format and therefore can be easily integrated into existing units.

Application

Measurings of large sinusoidal alternating currents, which, for instance, correspond to motor currents, pump currents or generator currents.

Attention: when fitting, it must be ensured that the ferrite surfaces of the SWT are free from dirt or fat residues through contact. Otherwise measuring value deviations or even error measurings are possible.

Specific characteristics

- Clamp-on transformer technology
- Extended supply voltage range
- 4 ... 20 mA transmitter signal
- Easy installation

Business data

Order number

AD-SWT 50 SO
AD-SWT 100 SO
AD-SWT 200 SO

Accessory

DIN rail holder
50 A AC Primärstrom
100 A AC Primärstrom
200 A AC Primärstrom

35 mm Normschiene

Technical specifications

Primary current	
Measurement method	inductive
Measuring range	0 ... 50/100/200 A AC
Max. conductor diameter	23 mm
Transmitter output	
Output range	$4 \ldots 20 \mathrm{~mA}$
Residual ripple	$50 \mu \mathrm{Ass}$
Transmitter-supply	
Voltage range DC	$10 . .30 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Transmission behaviour	
Basic accuracy	< 1 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	< 2 s (10... $90 \%)$
Housing	
Dimensions (WxHxD)	$50 \times 42 \times 82 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	1,5 mm² flex wire / $2,5 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	~ 200 g
Manner of fastening	Folding transducer housing
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{11}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Input / output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Output	electrical surge and reverse current protection

${ }^{1)}$ During checking, slight signal deviations are possible.

Ac ssalion convener
Current-transformer-transmitter
AD-SWT 50 SO AD-SWT 100 SO AD-SWT 200 SO
 Dimensions

AC Isolation Converter

Current Transformer Transmitter TRMS

Description

The SWT-TRMS series of devices (AD-SWT 50 SO-TRMS, AD-SWT 100 SO-TRMS and AD-SWT 200 SO-TRMS) serves the measuring of large AC currents and simultaneous conversion to $4 \ldots 20 \mathrm{~mA}$ transmitter signal. Because of the RMS measurement, the current consumption of non-linear consumers can be measured. Even strong distortions of the sinusoidal signal are easily measurable through the high sampling rate. The devices are designed in two-wire technology and can be operated in a wide range of voltages. Dependent on the amount of the primary current, the devices sink a proportional $4 . . .20 \mathrm{~mA}$ signal from the connected supply voltage. Due to the integral protection against polarization error and over-voltage, the transmitter are also protected against erroneous applications or transient over-voltages. The housing is designed in external clamp-on transformer format and therefore can be easily integrated into existing units.

Application

Measurement of large alternating currents, of linear or non-linear loads.
Attention: when fitting, it must be ensured that the ferrite surfaces of the SWT are free from dirt or fat residues through contact. Otherwise measuring value deviations or even error measurings are possible.

Specific characteristics

- Clamp-on transformer technology
- TRMS measurement
- Extended supply voltage range
- 4 ... 20 mA transmitter signal
- Easy installation

Business data

Order number

AD-SWT 50 SO-TRMS
AD-SWT 100 SO-TRMS
AD-SWT 200 SO-TRMS

Accessory

DIN rail holder
50 A AC primary current
100 A AC primary current

$$
200 \text { A AC primary current }
$$

Technical specifications

Primary current

Measurement method Sample rate

Max. measurable harmonic
Calculation method Short-term overload (1 s)
Permanent overload (24 h)
Measuring range
Max. conductor diameter

Transmitter output

Output range
Residual ripple

Transmitter-supply

Voltage range DC
Nominal voltage DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference

inductive

1 kHz (20 measurements / mains period)
$10(500 \mathrm{~Hz})$
root mean square TRMS
twenty times of the nominal value
120% of the nominal value
0 ... 50/100/200 A AC (50 Hz)
23 mm
4... 20 mA
$30 \mu \mathrm{Ass}$

10 ... 30 V DC
24 V DC
$<0,5 \%$ (at fundamental 50 Hz)
100 ppm/K
< 1 s (10... $90 \%)$
$50 \times 42 \times 82 \mathrm{~mm}$
IP 20
screw clamp
$1,5 \mathrm{~mm}^{2}$ flex wire / $2,5 \mathrm{~mm}^{2}$ one wire $0,5 \mathrm{Nm}$
~ 200 g
Folding transducer housing
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degre	

Pollution category
2
Safety measurement
Measurement category

61010-2-030
CAT III

Galvanic isolation, test voltages

Input / output
$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.) + insulation of the primary wire
Protection circuits
Output
electrical surge and reverse current protection
${ }^{1)}$ During checking, slight signal deviations are possible.
$\overline{\text { AC solation Conventer }}$
Current Transformer Transmitter TRMS
AD-SWT 50 SO-TRMS
AD-SWT 100 SO-TRMS
AD-SWT 200 SO

Block and wiring diagram

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 400 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. Due to its current-sinking output, transmitter signals can also be separated or converted. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/- 1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- bipolar current or voltage output
- current sink output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier
AD-TV 400 GVD

Accessory (optional)

Operating module
USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring range	-50 ... + 50 mA DC
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100 \mathrm{~V}$ DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	19,5 V
Current limit	$\sim 25 \mathrm{~mA}$
Output current	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Output voltage	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Current sink output	
Current sink	0/4 ... 20 mADC
Max. voltage to be applied	35 V DC
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... $253 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,4 \mathrm{~W}$
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category
EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 400 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Isolation Transmitter

Description

The isolation transmitter AD-TWT 24 GM in 2-wire-transmitter technique impress into a supply voltage a standard measurement signal of 4-20 mA . The output signal follows linear the input signal up to a maximum value. The connection of an additional auxiliary voltage is not necessary. It obtains its auxiliary energy from the transmitter supply.

Application

Economical galvanical isolation of a active analog signal in a impressed passive $4-20 \mathrm{~mA}$ signal (2 -wire-transmitter technique).

Specific characteristics

- 2-wire-transmitter technique, low amount of cabling
- output signal of 4-20 mA independent from supply voltage
- compact design (DIN rail)

Business data

Order number
AD-TWT 24 GM

Technical specifications

Input current

Measuring range $\quad 4 \ldots 20 \mathrm{~mA}$

Required input voltage $\quad 2,7 \mathrm{~V}$ (4 V no load)

Transmitter output

Output range
Feeding voltage
Residual ripple
Transmission behaviour

Basic accuracy	$<0,2 \%$
Temperature influence	$150 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 700 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$13 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~m}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN $61326-1^{1)}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements
Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2
Maximum permanent working 45 V DC
voltage across the galvanic
isolation
Galvanic isolation, test voltages
Input / output $\quad 510 \mathrm{~V}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits
Input electrical surge and reverse current protection
Output electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Isolation Transmitter

Dimensions

Description

The SWT series of devices (AD-SWT 50 SO, AD-SWT 100 SO and ADSWT 200 SO) serves the measuring of large sinusoidal currents and simultaneous conversion to $4 . . .20 \mathrm{~mA}$ transmitter signal. The devices are designed in two-wire technology and can be operated in a wide range of voltages. Dependent on the amount of the primary current, the devices sink a proportional $4 \ldots 20 \mathrm{~mA}$ signal from the connected supply voltage. Due to the integral protection against polarization error and over-voltage, the transmitter are also protected against erroneous applications or transient over-voltages. The housing is designed in external clamp-on transformer format and therefore can be easily integrated into existing units.

Application

Measurings of large sinusoidal alternating currents, which, for instance, correspond to motor currents, pump currents or generator currents.

Attention: when fitting, it must be ensured that the ferrite surfaces of the SWT are free from dirt or fat residues through contact. Otherwise measuring value deviations or even error measurings are possible.

Specific characteristics

- Clamp-on transformer technology
- Extended supply voltage range
- 4 ... 20 mA transmitter signal
- Easy installation

Business data

Order number

AD-SWT 50 SO
AD-SWT 100 SO
AD-SWT 200 SO

Accessory

DIN rail holder
50 A AC Primärstrom
100 A AC Primärstrom
200 A AC Primärstrom

35 mm Normschiene

Technical specifications

Primary current	
Measurement method	inductive
Measuring range	0 ... 50/100/200 A AC
Max. conductor diameter	23 mm
Transmitter output	
Output range	$4 \ldots 20 \mathrm{~mA}$
Residual ripple	$50 \mu \mathrm{Ass}$
Transmitter-supply	
Voltage range DC	$10 . .30 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Transmission behaviour	
Basic accuracy	< 1 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	< 2 s (10... $90 \%)$
Housing	
Dimensions (WxHxD)	$50 \times 42 \times 82 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	1,5 mm² flex wire / $2,5 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	~ 200 g
Manner of fastening	Folding transducer housing
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{11}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Input / output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Output	electrical surge and reverse current protection

${ }^{1)}$ During checking, slight signal deviations are possible.

Ac ssalion convener
Current-transformer-transmitter
AD-SWT 50 SO AD-SWT 100 SO AD-SWT 200 SO
 Dimensions

AC Isolation Converter

Current Transformer Transmitter TRMS

Description

The SWT-TRMS series of devices (AD-SWT 50 SO-TRMS, AD-SWT 100 SO-TRMS and AD-SWT 200 SO-TRMS) serves the measuring of large AC currents and simultaneous conversion to $4 \ldots 20 \mathrm{~mA}$ transmitter signal. Because of the RMS measurement, the current consumption of non-linear consumers can be measured. Even strong distortions of the sinusoidal signal are easily measurable through the high sampling rate. The devices are designed in two-wire technology and can be operated in a wide range of voltages. Dependent on the amount of the primary current, the devices sink a proportional $4 . . .20 \mathrm{~mA}$ signal from the connected supply voltage. Due to the integral protection against polarization error and over-voltage, the transmitter are also protected against erroneous applications or transient over-voltages. The housing is designed in external clamp-on transformer format and therefore can be easily integrated into existing units.

Application

Measurement of large alternating currents, of linear or non-linear loads.
Attention: when fitting, it must be ensured that the ferrite surfaces of the SWT are free from dirt or fat residues through contact. Otherwise measuring value deviations or even error measurings are possible.

Specific characteristics

- Clamp-on transformer technology
- TRMS measurement
- Extended supply voltage range
- 4 ... 20 mA transmitter signal
- Easy installation

Business data

Order number

AD-SWT 50 SO-TRMS
AD-SWT 100 SO-TRMS
AD-SWT 200 SO-TRMS

Accessory

DIN rail holder
50 A AC primary current
100 A AC primary current

$$
200 \text { A AC primary current }
$$

Technical specifications

Primary current

Measurement method Sample rate

Max. measurable harmonic
Calculation method Short-term overload (1 s)
Permanent overload (24 h)
Measuring range
Max. conductor diameter

Transmitter output

Output range
Residual ripple

Transmitter-supply

Voltage range DC
Nominal voltage DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference

inductive

1 kHz (20 measurements / mains period)
$10(500 \mathrm{~Hz})$
root mean square TRMS
twenty times of the nominal value
120% of the nominal value
0 ... 50/100/200 A AC (50 Hz)
23 mm
4... 20 mA
$30 \mu \mathrm{Ass}$

10 ... 30 V DC
24 V DC
$<0,5 \%$ (at fundamental 50 Hz)
100 ppm/K
< 1 s (10... $90 \%)$
$50 \times 42 \times 82 \mathrm{~mm}$
IP 20
screw clamp
$1,5 \mathrm{~mm}^{2}$ flex wire / $2,5 \mathrm{~mm}^{2}$ one wire $0,5 \mathrm{Nm}$
~ 200 g
Folding transducer housing
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degre	

Pollution category
2
Safety measurement
Measurement category

61010-2-030
CAT III

Galvanic isolation, test voltages

Input / output
$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.) + insulation of the primary wire
Protection circuits
Output
electrical surge and reverse current protection
${ }^{1)}$ During checking, slight signal deviations are possible.
$\overline{\text { AC solation Conventer }}$
Current Transformer Transmitter TRMS
AD-SWT 50 SO-TRMS
AD-SWT 100 SO-TRMS
AD-SWT 200 SO

Block and wiring diagram

Dimensions

AD-MWT 50 ST

Description

The transmitter AD-MWT 50 ST converts a Pt 100 temperature sensor signal into a passive transmitter signal (current sink: $4-20 \mathrm{~mA}$). An external supply voltage is not necessary. The necessary energy is taken from the transmitter supply at the output of the device. The impressed output signal corresponds to the desired input temperature range.

Application

Inexpensive conversion of a Pt 100 temperature transmitter signal into a passive impressed $4-20 \mathrm{~mA}$ signal (2-wire transmitter technology)

Specific characteristics

- 2-wire transmitter technology, low wiring effort
- highly linear conversion, no adjustment due to 3-wire technology
- supply voltage independent output signal of 4-20 mA
- user-friendly plug-in design on terminal block

Business data

Order number
AD-MWT 50 ST

Technical specifications

PT100-input

Measuring range	customer specification
Type	PT100 3-wire system DIN IEC 751

Wiring
Output current
Output range
Type
Residual ripple
Supply voltage drift
Supply
Voltage range DC
Nominal voltage DC
Power consumption DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Weight
Manner of fastening
Environmental conditions
Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference
PT100 3-wire system DIN IEC 751
3-Leiter

4 ... 20 mA
current sink
30μ Ass
kein (betw. 8 ... 32 V)

8 ... 32 V DC
24 V DC
max. $0,65 \mathrm{~W}$
<0,2 \%
100 ppm/K
$\sim 20 \mathrm{~ms}$

20,8×42×102 mm
IP 20
Screw terminals in plug-in socket
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
$0,5 \mathrm{Nm}$
$\sim 100 \mathrm{~g}$
35 mm DIN rail 35 mm Plug-in socket
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{17}$
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements
Product family standard
EN 61010-1
Overvoltage category II
Elevation max.
Pollution degree 2
Protection circuits
Input electrical surge protection
Output electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Description

The AD-STVEX 710 GVD supply isolating amplifier is used for the intrinsically safe supply of a transmitter installed in the hazardous area. The supply isolation amplifier itself is installed as associated electrical equipment in the non-hazardous area, i.e. the safe area. The signal is galvanically isolated and transmitted to the non-hazardous area. The passive input also allows active signals from the hazardous area. The active current output, the current sink output and the voltage output facilitate the adaptation to the following signal input. The device can be operated at 24 V DC or 230 VAC .

Application

Supply of a transmitter in the hazardous area and galvanic isolation of the signal.

Specific characteristics

- Supply of a transmitter up to zone 0 (gas) or 20 (dust)
- Active current output, current sink output and voltage output
- Open-circuit detection according to Namur recommendation NE43
- Further parameters configurable via configuration software AD-Studio
- Detachable, coded connection terminals
- Zero and full scale adjustment possible via front panel keys

Business data

Order number

AD-STVEX 710 GVD	Ex input top
AD-STVEX 710 GVD S-388	Ex input bottom

Technical specifications

Transmitter input, intrinsically safe

Feeding voltage	$23 \mathrm{~V} @ 4 \mathrm{~mA} \ldots 16 \mathrm{~V} @ 20 \mathrm{~mA}$
Maximum measuring range	$0 \ldots 22 \mathrm{~mA}$
Maximum short circuit current	68 mA

Current input, intrinsically safe

Maximum measuring range $0 \ldots 22 \mathrm{~mA}$
Input resistance 50 Ohm
Current output, active
Maximum output range Max. burden
0... 22 mA

500 Ohm
Current sink output, passive
Maximum output range $0 \ldots 22 \mathrm{~mA}$
Max. external supply voltage 25 V DC
Max. burden
Output voltage
Maximum output range
0 ... 11 V
2 kOhm
Transmission behaviour
Resolution input
Resolution voltage output
Maximum error
Temperature influence
Response time
$\sim 20 \mu \mathrm{~A} / \mathrm{LSB}$
$\sim 20 \mu \mathrm{~A} / \mathrm{LSB}$
~ $10 \mathrm{mV} / \mathrm{LSB}$
$0,2 \%$ of full scale
~ $50 \mathrm{ppm} / \mathrm{K}$
~ 100 ms (10 ... 90%)

Auxiliary voltage

Range
Power consumption

Environmental conditions

Ambient temperature
$-20 \ldots+60^{\circ} \mathrm{C}$

Approval

ATEX

Type examination certificate Standards

EMC
Product family standard
Emitted interference

Electrical safety requirements

Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

(Ex) Supply Isolation Amplifier

Display and operating elements

On: Operation LED

Steady light: Ready to operate
Flashing 2x: Keystroke
Flashing 1 Hz : Invalid measured value according to NE43

Zero: Pushbutton zero
Set start of measuring range
Full: Pushbutton full point
Set end of measuring range
Zero \& Full
Set measuring range to factory values

AD-PC: Configuration
Jack socket for communication with PC configuration software.

Block and wiring diagram

Dimensions

Description

The contact amplifier (switching amplifier) serves preferably the protection of weak sensor contacts or the amplification of binary sensor signals. The AD-KVEX 100/200 GVD provides a logical input signal amplified at a contact output. Typical input signals are reed contacts, signal sensor according to Namur Namur (DIN EN 60947-5-6) or resistance changes. At the output, heavy-duty and potential free contacts are provided. The logical switching direction as well as the line fault recognition is separately switchable for each conduit. The version AD-KVEX 100/200 GVDO has wear-free semi-conductor outputs, which are also galvanically separated via an optic isolation. The device contains an electronic wide range power supply and can operate in a wide supply voltage range.

Application

Pulse recording of water meters or flow monitors for counting throughflow quantities. Amplification and contact protection of weak sensor signals (reed contacts, limit switches, etc.), switching signal transmission in control circuits, switching amplifier for inductive and capacitive proximity switches according to Namur (DIN EN 60947-5-6).

Specific characteristics

- Intrinsically safe input [Ex ia] IIC
- Up to two independent switching channels (AD-KVEX 200)
- Switching function can be reversed
- Line fault detection
- LEDs for signal and error display
- Wide range power supply
- Optional version with semiconductor output
- Optional available with Ex input terminal at the bottom (order option: S-488)

Business data

Order number

AD-KVEX 100 GVD
AD-KVEX 100 GVD-O
AD-KVEX 200 GVD
AD-KVEX 200 GVD-O

Options

Ex input terminals below special order type S-488

Technical specifications

Signal input	
Min. pulse width	100 ms
Namur supply voltage	ca. 8,2 V DC +/-3\%
Logic level, Low	< 1,6 mA
Logic level, High	> 1,9 mA
Wire breakage detection	$<0,2 \mathrm{~mA}$
Short circuit detection	$>7,8 \mathrm{~mA}$
Signal types	Initiator DIN EN 60947-5-6, contact, transistor
Contact output	
Maximum switching load AC	250 V, 2 A
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	potential-free changeover
Switching operations mechanical	1×10^{7}
At $230 \mathrm{~V} / 2 \mathrm{~A} A C, \cos (\mathrm{phi})=1$	6×10^{5}
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4$	2×10^{5}
At 50V/2 A DC	2×10^{5}
Semiconductor output	
Max switching voltage	30 V DC
Max. switching current	50 mA DC
Supply	
Voltage range AC	50 ... 250 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Power consumption AC	3,5 VA (2,3 VA ; KVEX 100 GVD)
Voltage range DC	$20 . .120$ V DC
Nominal voltage DC	24 V DC
Power consumption DC	1,8 W (1W ; KVEX 100 GVD)
Transmission behaviour	
Response time	$\sim 100 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 115 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35mm (EN50022)
Environmental conditions	
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}$
Storage and transport	$-20 \ldots+70^{\circ} \mathrm{C}$ (no condensation)

Technical specifications		EMC					
Approval		Product family standard	EN 61326-1 ${ }^{\prime \prime}$				
ATEX	II(1) G [Ex ia Ga] IIC	Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1				
	II(1) D [Ex ia Da] IIIC	Electrical safety requirements					
EU-Type Examination	BVS 16 ATEX E 038 X	Product family standard	EN 61010-1				
Certificate		Overvoltage category	II				
Safety Specifications per channel		Pollution degree	2				
Voltage Uo	9,56 V DC	Galvanic isolation, test voltages					
Current lo	10,62 mA DC	Input / output	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)				
Power Po	$25,4 \mathrm{~mW}$	Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)				
Max. external capacitance Co		Protection circuits					
\|IC	3,6 $\mu \mathrm{F}$						
\|	B			C	$26 \mu \mathrm{~F}$	Input	electrical surge protection
\|	A	$210 \mu \mathrm{~F}$	Power supply	protection against over voltage, over			
Max. external inductance Lo			temperature and reverse polarity				
\|	C	315 mH	${ }^{1}$ During checking, slight signal devia	oossible.			
\|	B			C	1261 mH		
\|	A	2522 mH					
Max. external inductance / resistance ratio Lo/Ro							
\|	C	$1,41 \mathrm{mH} / \mathrm{Ohm}$					
\|	B			C	$5,65 \mathrm{mH} / \mathrm{Ohm}$		
\|	A	11,3 mH/Ohm					
Internal capacitance Ci	N/A						
Internal inductance Li	N/A						
Safety Specifications $\mathbf{2}$ channels parallel							
Voltage Uo	9,56 V DC						
Current lo	21,24 mA DC						
Power Po	50,8 mW						
Max. external capacitance Co							
\|	C	3,6 $\mu \mathrm{F}$					
\|	B			C	$26 \mu \mathrm{~F}$		
\|	A	$210 \mu \mathrm{~F}$					
Max. external inductance Lo							
\|IC	$78,8 \mathrm{mH}$						
\|	B			C	$315,25 \mathrm{mH}$		
\|	A	$630,5 \mathrm{mH}$					
Max. external inductance / resistance ratio Lo/Ro							
\|	C	0,706 mH/Ohm					
\|	B			C	2,826 mH/Ohm		
\|	A	$5,565 \mathrm{mH} / \mathrm{Ohm}$					
Internal capacitance Ci	N/A						
Internal inductance Li	N/A						

Block and wiring diagram

Function of Frontswitch			
Switch	Function	OFF	ON
1	Invers 1	off	on
2	Error detector 1	on	off
3	Invers 2	off	on
4	Error detector 2	on	off

Dimensions

Multifunction Transducer

Description

The digital multi-function measuring transformers of series VarioCheck AD-VC 1 are freely programmable digital measuring transducers with two analogue outputs and up to 2 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. VarioCheck AD-VC 1 fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, timedelayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- bipolar current input
- bipolar mV voltage input
- voltage input
- Power supply for 2-wire transmitters
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C; internal or external reference junction
- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Resistance, Potentiometer input
- Sensor error detection for thermocouples and resistance thermometers
- Input of a characteristic curve possible
- Automatic or manual simulation operation
- 2 bipolar current or voltage output
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-VC1 GVD-R0 AD-VC1 GVD-R2

Accessory (optional)

Operating module
Control panel with RS-485
USB programming adapter
Configuration software

without relay

two relays

AD-VarioControl
AD-VarioConnect
AD-VarioPass
AD-Studio

Technical specifications

Input current
Measuring range
Input resistance
Basic accuracy
Transmitter supply
Off-load voltage
Voltage at 20 mA
Current limit
Input voltage
Measuring ranges
Input resistance
Basic accuracy
Input voltage mV
Measuring ranges

Input resistance
Basic accuracy

Thermocouples

Comparative place:
Internal
External
To DIN EN 60584:
measuring range type J measuring range type T measuring range type K measuring range type E measuring range type N basic accuracy
To DIN EN 60584:
measuring range type S
measuring range type R
measuring range type B
basic accuracy
After standard ASTM E988:
measuring range type C
basic accuracy
$-24 \ldots+24 m A D C$
20 Ohm
$4 \mu \mathrm{~A}$
$24,0 \mathrm{~V}$
$18,0 \mathrm{~V}$
$\sim 25 \mathrm{~mA}$
$0 \ldots+12 \mathrm{~V} D C$
1 MOhm
1 mV
$-15 \ldots+15 \mathrm{mV}$
$-30 \ldots+30 \mathrm{mV}$
$-60 \ldots+60 \mathrm{mV}$
$-125 \ldots+125 \mathrm{mV}$
$-250 \ldots+250 \mathrm{mV}$
1 MOhm
$20 \mu \mathrm{~V}$
measurement with sensor in the device connecting terminals Cold junction temperature selectable by parameters

$$
\begin{aligned}
& -200 \ldots+1200^{\circ} \mathrm{C} \\
& -200 \ldots+400^{\circ} \mathrm{C} \\
& -200 \ldots+1360^{\circ} \mathrm{C} \\
& -200 \ldots+1000^{\circ} \mathrm{C} \\
& -200 \ldots+1300^{\circ} \mathrm{C} \\
& 1 \mathrm{~K} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& +400 \ldots+1800^{\circ} \mathrm{C} \\
& 2 \mathrm{~K} \\
& 0 \ldots+2320^{\circ} \mathrm{C} \\
& 2 \mathrm{~K}
\end{aligned}
$$

Multifunction Transducer

Technical specifications	
Resistance input	
Resistance thermometer inputs DIN EN 60751: Pt100, Pt500 and	
Pt1000 DIN 43760: Ni100, Ni500 and Ni1000	
measuring range Pt	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
measuring range Ni	$-60 \ldots+230^{\circ} \mathrm{C}$
smallest measuring spans	20 K
short circuit detection	<20 Ohm
basic accuracy	0,2 K
Linear resistance	
measuring range	0 ... 4000 Ohm
basic accuracy	0,1 Ohm
Connection method	2-, 3- oder 4-wire system
Sensor supply	$100 \mu \mathrm{~A}$
Max line resistance ${ }^{1)}$	$50 \mathrm{Ohm} / \mathrm{cable}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als	Offset in die Messung ein.
Potentiometer input	
Connection method	3 -wire system
Max. Resistance	50 Ohm ... 100 kOhm
Sensor supply	< $=500 \mu \mathrm{~A}$
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	20 HAss
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	10 mVss
Relay outputs A/B	
Contact type	potential free changeover
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Transmission behaviour	
Linearity error	<0,2\% of the measuring range
Rise time	500 ms (0... 90%, 100... 10%)
Rise time (temperature input)	< 1s (0... $90 \%, 100 . . .10 \%$)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of the measuring range

Block and wiring diagram

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Power consumption with operating module AC / DC

Housing

Dimensions (W×HxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature

Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 Cl. B, Gr. 1
${ }^{1)}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input to output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
In -/output to auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
Rel. A Rel: two LEDs for relays A and B in red
Rel. B on - relay activated
AD-PC: Communication interface for configuration by a PC Communication interface for VarioControl

Dimensions

Multifunction Transducer

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-VC 1 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40101	2	Input signal	InUnit	7	1	0
40103	2	Cold-junction temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40301	2	Output signal 1	OutUnit	7	1	1
40303	2	Output signal 2	OutUnit	7	1	1
40601	1	Relay state A		3	1	1
40602	1	Relay state B		3	1	1
40801	2	Scaled input	ScUnit	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Measuring Converter

Measuring Transducer For Potentiometer

Description

The measuring transducer transforms the position of a remote transmitter (potentiometer) into a proportional output signal. All remote transmitter can be used with the full-scale values ??of 100 ohms up to 100 kohms. Precision calibration trimmer for zero and full scale are included in the amplifier. The output signal is independent of the connected load up to maximum resistance. It can be selected between current or voltage output. Due to the highly efficient integrated wide range power supply high output loads are achieved with low power consumption.

Application

Continuous indication of height level sensors, manometers, position sensors etc. with remote transmitter as potentiometer.

Specific characteristics

- Scanning of potentiometers of 100 ohms to 100 ohms
- Zero and span trimmer for wire calibration
- Current or voltage output
- Wide range power supply

Business data

Order number

AD-MV 110 GS

Technical specifications	
Potentiometer-input	
Measuring range	0 ... 100 Ohm up to 0 ... 100 kOhm
Feeding voltage	~ 1V DC
Output current	
Output range	0 ... $20 \mathrm{~mA}, 4$... $20 \mathrm{~mA}{ }^{\text {² }}$
Max. burden	500 Ohm
Residual ripple	20μ Ass
Output voltage	
Output range	0 ... $10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$ "
Min. burden	500 Ohm
Residual ripple	50 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,2 VA / 1,1 W
Transmission behaviour	
Accuracy	<0,2\%
Temperature influence	$50 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 200 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{2}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Signal / supply unit	4 kV (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection
${ }^{1}$ Specity signal range in plain text when ordering.	
${ }^{2}$) During electromagnetic disturbance minor	anges in output signal are possible.

Measuring Converter

Measuring Transducer For Potentiometer

AD-MV 110 GS

Temperature Measuring Converter

Description

The digital temperature measuring transformer AD-MV 550 GVD serves the galvanic separation and transformation of resistance transmitter or thermocouples to an impressed output signal (i.e. $0-20 \mathrm{~mA}$). All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional control panel AD-VarioControl or via the programming software AD-Studio. Due to its current-sinking output, transmitter signals can also be galvanic separated or transformed. The wide range power pack covers all supply regions.

Specific characteristics

- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C or inputs a mV/Tcharacteristic curve. Selectable internal or external reference junction
- A bipolar mV-Voltage input. Free linearizing curves possible.
- bipolar current or voltage output
- current sink output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Temperature Measuring AD-MV 550 GVD
Converter
Accessory (optional)
Operating module USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751

Measuring range	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Accuracy	0,5 K
Smallest measuring spans	20 K
Max line resistance ${ }^{1)}$	10 Ohm/cable
Sensor supply	
Pt100	1 mA
Pt500, Pt1000	$210 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als Offset in die Messung ein.	
Resistance thermometer inputs Ni100, Ni500, Ni1000 to	
DIN EN 43760	
Measuring range	$-60 \ldots+230{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Accuracy	0,5 K
Smallest measuring spans	20 K
Max line resistance ${ }^{1)}$	10 Ohm/cable
Sensor supply	
Ni100	1 mA
Ni500, Ni1000	$210 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswidersta	Offset in die Messung ein.

Thermocouples

Comparative place:

Internal

External

Measuring range type J To DIN EN 60584:
Measuring range type T
Measuring range type K
Measuring range type E
Measuring range type N
Measuring range type S
Measuring range type R
Measuring range type B
After standard ASTM E988:
Measuring range type C
Smallest measuring spans

Voltage inputs

Measuring range
measurement with LM35 in the device connecting terminals Cold junction temperature selectable by parameters
$-200 \ldots+1200^{\circ} \mathrm{C}$
$-200 \ldots+400^{\circ} \mathrm{C}$
$-200 \ldots+1360^{\circ} \mathrm{C}$
$-200 \ldots+1000^{\circ} \mathrm{C}$
$-200 \ldots+1300^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$+400 \ldots+1800^{\circ} \mathrm{C}$
$0 \ldots+2320^{\circ} \mathrm{C}$
100 K
$-18 \ldots+18 \mathrm{mV}$
$-36 \ldots+36 \mathrm{mV}$
$-72 \ldots+72 \mathrm{mV}$
$-144 \ldots+144 m V$

Technical specifications	
Output current	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Output voltage	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Current sink output	
Current sink	0/4 ... 20 mA DC
Max. voltage to be applied	35 V DC
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	600 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	20 ... 253 V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,4 VA / 1,2 W

Block and wiring diagram

Housing

Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 CI. B, Gr. 1
${ }^{11}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input/output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-MB 550 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40801	2	Input signal	Ohm / mV	7	1	0
40803	2	Cold-junction temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40805	2	Scaled input	${ }^{\circ} \mathrm{C} / \ldots$	7	1	0
40905	2	Output signal 2	mA	7	1	1
40907	2	Output signal 1	mA / V	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16:3	S16:4	U32: 5	S32: 6	float: 7

AD-MV 50 GX

Description

The measuring value amplifier AD-MV 50 GX (for $2 / 3$ lead technology) or AD-MV 54 GX (for 4-lead technology only) converts the measuring signal issued from a resistance generator Pt 100 (according to DIN IEC 751) to an impressed output signal (i.e. 0-20 mA or similar). The output characteristic curve is issued temperature linear. When using the 3 -lead switching lead, resistance up to 100 Ohms are compensated. In 2-lead switching a subsequent zero alignment and full alignment via trim potentiometers at the front is possible. The analogue output signal is galvanically separated from the supply voltage. A highly efficient, integrated electronic wide-range power pack (ALLPOWER) enables operation with $18-30 \mathrm{~V}$ DC. The power supply is independet of polarity.A high packing density is achieved due to its narrow build.
Temperature range and output must be defined when ordering equipment.

Application

Temperature measuring with Pt 100 temperature transmitter for continuous transformation of temperature variables to analogue signals.

Specific characteristics

- Pt 100 signal conversion into standard signals
- wide range power supply
- conversion of 2, 3-wire technology (MV50GX)
- conversion of 4-wire technology (MV54GX)
- narrow design
- operating display with green LED

Business data

Order number

AD-MV 50 GX
AD-MV 54 GX

Accessory

DIN-rail connector
for 2 - and 3-wire connection for 4-wire connection

AD-GX Connector

Measuring Converter

Pt100 Converter

Display and operating elements

Front

Block and wiring diagram

Dimensions

Description

The measuring value amplifier AD-MV 50 GL (for $2 / 3$ lead technology) or AD-MV 54 GL (for 4-lead technology only) converts the measuring signal issued from a resistance generator Pt 100 (according to DIN IEC 751) to an impressed output signal (i.e. $0-20 \mathrm{~mA}$ or similar). The output characteristic curve is issued temperature linear. When using the 3 -lead switching lead, resistance up to 100 Ohms are compensated. In 2-lead switching a subsequent zero alignment and full alignment via trim potentiometers at the front is possible. The analogue output signal is galvanically separated from the supply voltage. A highly efficient, integrated electronic wide-range power pack (ALLPOWER) enables operation with $20-253$ V DC and $50-253$ V AC. There is no possibility of cross polarity of the connection voltage. A high packing density is achieved due to its narrow build.

Application

Temperature measuring with Pt 100 temperature transmitter for continuous transformation of temperature variables to analogue signals.

Specific characteristics

- Pt 100 conversion into standard signals
- current or voltage output
- Wide range power supply
- Conversion of 2,3 and 4 -wire technology possible

Business data

Order number

AD-MV 50 GL
AD-MV 54 GL
for 2 - and 3-wire connection
for 4-wire connection

Measuring Converter

Pt100 Converter

Fieldbus Devices
Temperature-Input-Bus-Converter

Description

The digital temperature measuring converter of series AD-MV55 GX are freely programmable digital measuring transducer with RS485 interface. Device addresses from 1 to 99 can be set via the laterally accessible address switches. The input of all characteristics directly on the device, or use the configuration software "AD-Studio". The device fulfils all tasks of a universal measuring value recording through integral function modules such as selectable relay functions, simulation modus, free linearizing curves and a wide range of supply voltage. The operating voltage is indicated by a green LED. The data communication is signaled by a yellow LED. Invalid measurement signals outside the defined measuring range are detected. In this case, the green LED flashes. The power supply as well as the RS485 bus interface is possible via the rear DIN rail connector.

Specific characteristics

- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C or inputs a mV/Tcharacteristic curve. Selectable internal or external reference junction
- A bipolar mV-Voltage input. Free linearizing curves possible.
- Freely definable scaling of the quantity to be measured through stating range, decimal point position and unit from the list or defined unit.
- Zoom function, expanded scale, linearizing, inverse modus.
- Non-volatile saving of all set parameters.

Business data

Order number
AD-MV 55 GX

Technical specifications	
Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751	
Measuring range	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Resolution	16 Bit
Accuracy	0,5 K
Smallest measuring spans	30 K
Max line resistance ${ }^{1 /}$	10 Ohm/cable
Sensor supply	
Pt100	1 mA
Pt500, Pt1000	$210 \mu \mathrm{~A}$
${ }^{1}$ With 2 -conductor the line resistance comes as an offset into the measurement.	
Resistance thermometer inputs Ni100, Ni500, Ni1000 to DIN EN 43760	
Measuring range	$-60 \ldots+230^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Resolution	16 Bit
Accuracy	0,5 K
Smallest measuring spans	30 K
Max line resistance ${ }^{1 /}$	10 Ohm/cable
Sensor supply	
Ni100	1 mA
Ni500, Ni1000	$210 \mu \mathrm{~A}$

Thermocouples

Comparative place:

Internal
External
Resolution
Accuracy
Measuring range type J To DIN EN 60584:
Measuring range type T
Measuring range type K
Measuring range type E
Measuring range type N
Measuring range type S
Measuring range type R
Measuring range type B
After standard ASTM E988:
Measuring range type C
Smallest measuring spans
Voltage inputs
Measuring range

Resolution
Accuracy $\quad 0,2 \%$ of measuring range
measurement with LM35 in the device connecting terminals Cold junction temperature selectable by parameters
16 Bit
$0,2 \%$ of measuring range
$-200 \ldots+1200^{\circ} \mathrm{C}$
$-200 \ldots+400^{\circ} \mathrm{C}$
$-200 \ldots+1360^{\circ} \mathrm{C}$
$-200 \ldots+1000^{\circ} \mathrm{C}$
$-200 \ldots+1300^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$+400 \ldots+1800^{\circ} \mathrm{C}$
$0 \ldots+2320^{\circ} \mathrm{C}$
100 K
$-18 \ldots+18 \mathrm{mV}$
$-36 \ldots+36 \mathrm{mV}$
$-72 \ldots+72 \mathrm{mV}$
$-144 \ldots+144 \mathrm{mV}$
16 Bit

Fieldbus Devices

Temperature-Input-Bus-Converter

AD-MV 55 GX

Technical specifications

Transmission behaviour

Sampling rate
Temperature influence

RS485-Bus

Software protocol
Data format
Max. bus users
Bus termination
Max. length of bus Cable

LEDs

Green [On]
Yellow [D]

Controls

Address switch

1 measure/s
$+/-100 \mathrm{ppm} / \mathrm{K}$ of full scale

Modbus-RTU
19200, e, 8, 1
99
120 ohms both sides at the end
500 m (no spur lines)
twisted and shielded

Supply (blinking on error) RS485 Communication
$10+1$

Block and wiring diagram

RS-485

Supply voltage

(electrically connected)

Supply	
Supply voltage	18 ... 30 V DC
Max power consumption at 24V DC	300 mW
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail mounting 35mm, EN 50022
Type of protection	IP 20
Connection method	screw clamp
Bolting torque terminals	$0,5 \mathrm{Nm}$
Wire cross section	max. $2,5 \mathrm{~mm}^{2}$
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Permissible ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{2)}$	EN 61326-1
Emission ${ }^{3)}$	EN 55011, CISPR11 CI. A, Gr. 1
${ }^{\text {2) }}$ During electromagnetic disturbance minor changes in output signal are possible.	
${ }^{3}$ Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio reception in such environments.	
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages	
Signal / supply unit	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / RS485 bus	no galvanic isolation
Dimensions	

Temperature-Input-Bus-Converter

Modbus Communikation

The AD-MV 55 GX has an RS485 bus interface on which the Modbus RTU protocol is used. About this bus interface all measured data of the device can be read. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address (1...99) is set to the side-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device only via the standard data format (19200, e, 8.1) accessible. The position 0 thus represents a service position, the example can be used during parameterization error.

The AD-MV 55 GX supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Holding Registers" (0×10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free, but can also be purchased from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Unit	Datatype	[Code] = Value	\|read ${ }^{\text {write }}$	
Observations:							
40113	1	signal status	keine	U16	0/1/2/4	yes	no
40851	2	signal value	${ }^{\circ} \mathrm{C} / \mathrm{mV}$	float	\#\#\#\#,\#	yes	no
40852	6	scale unit	${ }^{\circ} \mathrm{C} / \mathrm{mV}$	string	unit	yes	no
40811	2	terminal temperature	${ }^{\circ} \mathrm{C}$	float	\#\#,\#\#\#\#	yes	no

43101	2	filter value	numeric	float	seconds		
43001	1	signal type	list	U16	[0]=RTD; [1]= TC; [2]=mV	yes	yes
43002	1	RTD type	list	U16	RTD-Liste	yes	yes
43003	1	RTD connectivity	list	U16	2-3-4-Leiter	yes	yes
43201	2	range begin Pt100	${ }^{\circ} \mathrm{C}$	float	-200...+850	yes	yes
43301	2	range end Pt100	${ }^{\circ} \mathrm{C}$	float	-200... +850	yes	yes
43202	2	range begin Pt500	${ }^{\circ} \mathrm{C}$	float	$-200 \ldots+850$	yes	yes
43302	2	range end Pt500	${ }^{\circ} \mathrm{C}$	float	-200...+850	yes	yes
43203	2	range begin Pt1000	${ }^{\circ} \mathrm{C}$	float	-200... +850	yes	yes
43303	2	range end Pt1000	${ }^{\circ} \mathrm{C}$	float	-200... 850	yes	yes
43204	2	range begin Ni100	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43304	2	range end Ni100	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43205	2	range begin Ni500	${ }^{\circ} \mathrm{C}$	float	-60... +230	yes	yes
43305	2	range end Ni500	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43206	2	range begin Ni1000	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43306	2	range end Ni1000	${ }^{\circ} \mathrm{C}$	float	$-60 . . .+230$	yes	yes
43207	2	range begin R/T	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43307	2	range end R/T	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43401	2	R/T characteristic X1	Ohm	float	0... 4000	yes	yes
43425	2	R / T characteristic Y 1	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
$43400+n$	2	R/T characteristic Xn	Ohm	float	0... 4000	yes	yes
$43424+n$	2	R/T characteristic Yn	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43424	2	R/T characteristic X24	Ohm	float	0... 4000	yes	yes
43448	2	R/T characteristic Y24	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43004	1	TC type	list	U16	TC-Liste	yes	yes
43005	1	junction	list	U16	[0]=int.; [1]=ext.	yes	yes
43102	2	junction temperature	${ }^{\circ} \mathrm{C}$	float	0... 100	yes	yes
43208	2	range begin Typ J	${ }^{\circ} \mathrm{C}$	float	-200...+1200	yes	yes
43308	2	range end Typ J	${ }^{\circ} \mathrm{C}$	float	-200...+1200	yes	yes
43209	2	range begin Typ T	${ }^{\circ} \mathrm{C}$	float	-200... +400	yes	yes
43309	2	range end Typ T	${ }^{\circ} \mathrm{C}$	float	-200...400	yes	yes
43210	2	range begin Typ K	${ }^{\circ} \mathrm{C}$	float	-200...+1360	yes	yes
43310	2	range end Typ K	${ }^{\circ} \mathrm{C}$	float	-200...+1360	yes	yes
43211	2	range begin Typ E	${ }^{\circ} \mathrm{C}$	float	-200...+1000	yes	yes
43311	2	range end Typ E	${ }^{\circ} \mathrm{C}$	float	-200...+1000	yes	yes
43212	2	range begin Typ N	${ }^{\circ} \mathrm{C}$	float	-200...+1300	yes	yes
43312	2	range end Typ N	${ }^{\circ} \mathrm{C}$	float	-200...+1300	yes	yes
43213	2	range begin Typ S	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43313	2	range end Typ S	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43214	2	range begin Typ R	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43314	2	range end Typ R	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43215	2	range begin Typ B	${ }^{\circ} \mathrm{C}$	float	+400... +1800	yes	yes
43315	2	range end Typ B	${ }^{\circ} \mathrm{C}$	float	+400 ... 1800	yes	yes
43216	2	range begin Typ C	${ }^{\circ} \mathrm{C}$	float	0...+2320	yes	yes
43316	2	range end Typ C	${ }^{\circ} \mathrm{C}$	float	0...+2320	yes	yes

Fieldbus Devices
Temperature-Input-Bus-Converter

43217	2	range begin U/T	${ }^{\circ} \mathrm{C}$	float	-200...+2500	yes	yes
43317	2	range end U/T	${ }^{\circ} \mathrm{C}$	float	-200...+2500	yes	yes
43449	2	U/T characteristic X1	mV	float	-144... 144	yes	yes
43473	2	U/T characteristic Y1	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43448 + n	2	U/T characteristic Xn	mV	float	-144... 144	yes	yes
$43472+n$	2	U/T characteristic Yn	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43472	2	U/T characteristic X24	mV	float	-144... 144	yes	yes
43496	2	U/T characteristic Y24	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
42997	1	baud rate	index	U16	see list below	yes	yes
42998	1	parity		U16	[0]=even; [1]=odd; [2]=no	yes	yes

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9
baud	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

Description

The measuring value transformer AD-MV 500 GL transforms the measuring signal emitted from a resistance thermometer (Pt 100) to an impressed output signal (i.e. $4 \ldots 20 \mathrm{~mA}, 0 . . .10 \mathrm{~V}$ o.a.). The output characteristic is outputted temperature-linear. When using the 3- or 4 -conductor switching, the conductor resistances are compensated up to 100 Ohm. With 2 -conductor switching, a subsequent zero balance and full balance is necessary. The measuring process can be set via easily accessible DIP switches at the front. The analogue output signal is always galvanic separated from the supply voltage and also from the input. Input and output data must be stated in clear text when ordering. With the input, the temperature measuring range must be stated and with the output, as alternative, current or voltage output can be selected.

Application

Temperature measuring with Pt100 temperature transmitter for continuous transformation of temperature variables to analogue signals.

Specific characteristics

- Pt100 input
- current or voltage output
- type of connection selectable over DIP switch on the front-panel
- galvanic isolation between input, output and power-supply
- Trimmer for fine adjustment on the front-panel

Business data

Order number
AD-MV 500 GL

Technical specifications

Pt100 input	
Max. measuring range	$-200 \ldots 800^{\circ} \mathrm{C}{ }^{1)}$
Connection method Output current	$2,3 \mathrm{or} 4$-wire
Output range	$0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}^{11}$
Max. burden	400 Ohm
Residual ripple	$50 \mu \mathrm{Ass}$
Output voltage	$0 \ldots 10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}{ }^{1)}$
Output range Min. burden Residual ripple	1 kOhm
	70 mVss

Supply

Voltage range AC $50 \ldots 253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC
Transmission behaviour
Accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD)	$18 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard
EN 61326-1 ${ }^{2)}$
Emitted interference
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input / output	$3,75 \mathrm{kV}(1 \mathrm{~min})$.
Signal / supply unit	$4 \mathrm{kV}(1 \mathrm{~min})$.

Protection circuits

Input
Output
Power supply
electrical surge protection
electrical surge protection electrical surge and reverse current protection
${ }^{1)}$ Specify signal range in plain text when ordering.
${ }^{2)}$ During electromagnetic disturbance minor changes in output signal are possible.

Measuring Converter

Pt100 Converter

Block and wiring diagram

DIP-switch function table			
measure	S 1.1	S 1.2	S 1.3
2-wire	0	1	1
3-wire	0	1	0
4-wire	1	0	0

Dimensions

Multifunction Transducer

Description

The digital multi-function measuring transformers of series VarioCheck AD-VC 1 are freely programmable digital measuring transducers with two analogue outputs and up to 2 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. VarioCheck AD-VC 1 fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, timedelayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- bipolar current input
- bipolar mV voltage input
- voltage input
- Power supply for 2-wire transmitters
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C; internal or external reference junction
- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Resistance, Potentiometer input
- Sensor error detection for thermocouples and resistance thermometers
- Input of a characteristic curve possible
- Automatic or manual simulation operation
- 2 bipolar current or voltage output
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-VC1 GVD-R0 AD-VC1 GVD-R2

Accessory (optional)

Operating module
Control panel with RS-485
USB programming adapter
Configuration software

without relay

two relays

AD-VarioControl
AD-VarioConnect
AD-VarioPass
AD-Studio

Technical specifications

Input current
Measuring range
Input resistance
Basic accuracy
Transmitter supply
Off-load voltage
Voltage at 20 mA
Current limit
Input voltage
Measuring ranges
Input resistance
Basic accuracy
Input voltage mV
Measuring ranges

Input resistance
Basic accuracy

Thermocouples

Comparative place:
Internal
External
To DIN EN 60584:
measuring range type J measuring range type T measuring range type K measuring range type E measuring range type N basic accuracy
To DIN EN 60584:
measuring range type S
measuring range type R
measuring range type B
basic accuracy
After standard ASTM E988:
measuring range type C
basic accuracy
$-24 \ldots+24 m A D C$
20 Ohm
$4 \mu \mathrm{~A}$
$24,0 \mathrm{~V}$
$18,0 \mathrm{~V}$
$\sim 25 \mathrm{~mA}$
$0 \ldots+12 \mathrm{~V} D C$
1 MOhm
1 mV
$-15 \ldots+15 \mathrm{mV}$
$-30 \ldots+30 \mathrm{mV}$
$-60 \ldots+60 \mathrm{mV}$
$-125 \ldots+125 \mathrm{mV}$
$-250 \ldots+250 \mathrm{mV}$
1 MOhm
$20 \mu \mathrm{~V}$
measurement with sensor in the device connecting terminals Cold junction temperature selectable by parameters

$$
\begin{aligned}
& -200 \ldots+1200^{\circ} \mathrm{C} \\
& -200 \ldots+400^{\circ} \mathrm{C} \\
& -200 \ldots+1360^{\circ} \mathrm{C} \\
& -200 \ldots+1000^{\circ} \mathrm{C} \\
& -200 \ldots+1300^{\circ} \mathrm{C} \\
& 1 \mathrm{~K} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& +400 \ldots+1800^{\circ} \mathrm{C} \\
& 2 \mathrm{~K} \\
& 0 \ldots+2320^{\circ} \mathrm{C} \\
& 2 \mathrm{~K}
\end{aligned}
$$

Multifunction Transducer

Technical specifications	
Resistance input	
Resistance thermometer inputs DIN EN 60751: Pt100, Pt500 and	
Pt1000 DIN 43760: Ni100, Ni500 and Ni1000	
measuring range Pt	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
measuring range Ni	$-60 \ldots+230^{\circ} \mathrm{C}$
smallest measuring spans	20 K
short circuit detection	<20 Ohm
basic accuracy	0,2 K
Linear resistance	
measuring range	0 ... 4000 Ohm
basic accuracy	0,1 Ohm
Connection method	2-, 3- oder 4-wire system
Sensor supply	$100 \mu \mathrm{~A}$
Max line resistance ${ }^{1)}$	$50 \mathrm{Ohm} / \mathrm{cable}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als	Offset in die Messung ein.
Potentiometer input	
Connection method	3 -wire system
Max. Resistance	50 Ohm ... 100 kOhm
Sensor supply	< $=500 \mu \mathrm{~A}$
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	20 HAss
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	10 mVss
Relay outputs A/B	
Contact type	potential free changeover
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Transmission behaviour	
Linearity error	<0,2\% of the measuring range
Rise time	500 ms (0... 90%, 100... 10%)
Rise time (temperature input)	< 1s (0... $90 \%, 100 . . .10 \%$)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of the measuring range

Block and wiring diagram

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Power consumption with operating module AC / DC

Housing

Dimensions (W×HxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature

Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 Cl. B, Gr. 1
${ }^{1)}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input to output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
In -/output to auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
Rel. A Rel: two LEDs for relays A and B in red
Rel. B on - relay activated
AD-PC: Communication interface for configuration by a PC Communication interface for VarioControl

Dimensions

Multifunction Transducer

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-VC 1 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40101	2	Input signal	InUnit	7	1	0
40103	2	Cold-junction temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40301	2	Output signal 1	OutUnit	7	1	1
40303	2	Output signal 2	OutUnit	7	1	1
40601	1	Relay state A		3	1	1
40602	1	Relay state B		3	1	1
40801	2	Scaled input	ScUnit	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Limit Switch

Vario - Limit Switch

Description

The limit switch AD-MK 350 GVD serves the switching of limiting values on analogue signals, transmitter signals and resistance thermometer. If a 2-wire transmitter is connected, it will be supplied directly through a galvanic separated and current limited supply voltage. The device has analogue inputs for current, voltage and resistance thermometer, which can be utilised alternatively. The AD-MK 350 GVD can switch maximally two independent limiting values with its two potential-free change-over contacts. The switching thresholds and operating modes can be freely parameterized. This can be carried out via the optional control panel ADVarioControl or via the programming software AD-Studio. The status of the relevant relay is indicated via LED at the front or at the operating module AD-VarioControl.

Application

Switching limit values to active analog signals, 2- / 3-wire transmitters, and resistance thermometers, e.g. Flows, heights or temperatures.

Specific characteristics

- bipolar current input (+/- 0.5 mA to $+/-50 \mathrm{~mA}$)
- bipolar voltage input (+/-1 V to $+/-100 \mathrm{~V}$)
- power supply of 2- / 3-wire transmitters
- two potential-free change-over contacts
- operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Vario - Limit Switch
AD-MK 350 GVD
Accessory (optional)
Operating module USB programming adapter Configuration software

AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring range	$-50 \ldots+50 \mathrm{~mA} \mathrm{DC}$
Input resistance	40 Ohm
Resolution	16 Bit
Accuracy	$0,1 \%$ of full scale
Input voltage	
Measuring range	$-100 \ldots+100 \mathrm{~V} \mathrm{DC}$
Input resistance	1 MOhm
Resolution	16 Bit
Accuracy	$0,1 \%$ of full scale
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	$17,5 \mathrm{~V}$
Current limit	$\sim 25 \mathrm{~mA}$

Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751
Measuring range
Connection method
Resolution
$-200 \ldots+850^{\circ} \mathrm{C}$

Accuracy 0,6 K
Smallest measuring spans
Max line resistance ${ }^{1)}$
Sensor supply
20 K
10 Ohm/cable
$310 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als Offset in die Messung ein.
Resistance thermometer inputs Ni100, Ni500, Ni1000 to DIN EN 43760

Measuring range	$-60 \ldots+230^{\circ} \mathrm{C}$
Connection method	$2-, 3-$ oder 4 -wire system
Resolution	16 Bit
Accuracy	$0,6 \mathrm{~K}$
Smallest measuring spans	20 K
Max line resistance 1)	$10 \mathrm{Ohm} /$ cable
Sensor supply	$310 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als Offset in die Messung ein.	

Relay outputs A/B

Contact type
Max. AC-breaking capacity
Max. DC-breaking capacity
potential free changeover
250 V AC, 2 A AC, 50 Hz
50 V DC, 2 A DC
Switching operations
Mechanical
10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1 \quad 6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4 \quad 2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$

Transmission behaviour

Rise time
Temperature influence

500 ms (output auf 90%)
+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale

Limit Switch

Vario - Limit Switch

Technical specifications

Supply

Voltage range AC	$50 \ldots 253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Nominal voltage $A C$	230 V AC
Voltage range DC	$20 \ldots 253 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,4 \mathrm{~W}$

Housing

Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20

Connection method detachable terminal clamp

Terminals, wire cross section $2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals $\quad 0,5 \mathrm{Nm}$
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard ${ }^{\text {1) }}$	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
1)During electromagnetic disturbance minor changes in output signal are possible.	

${ }^{11}$ During electromagnetic disturbance minor changes in output signal are possible.
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input/output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$3 \mathrm{kV}(1 \mathrm{~min})$

Display and operating elements

MK350 GVD	On: LED for operating display in green on
On - normal operation Rel. A	
Relashing - Signal failure, signal outside range limits Rel: two LEDs for relays A and B in red on - relay activated	

AD.PC AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-MK 350 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40607	2	Input signal	mA / V Ohm	7	1	0
40609	2	Scaled input	${ }^{\circ} \mathrm{C} /$?	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16:3	S16:4	U32:5	S32: 6	float: 7

Limit Switch

Limit-switch For Standard Signals

Description

The measuring contactor AD-MK 330 GS serves the switching of limiting values to analogue signals or standard signals. The device has an $0 . .20$ $\mathrm{mA}, 4.20 \mathrm{~mA}$ input and an $0 . .10 \mathrm{~V}$ input, which can be used alternatively. With its two potential-free change-over contacts, the ADMK 330 GS can switch maximal two independent limiting values. The switching thresholds can be set at the front with the aid of the integral key coding switch in percent steps. The status of the relevant relay is indicated via an LED at the front. The AD-MK 330 GS has two different operating modes, which can be selected via the function keys. Either two independent limiting values can be switched, whereby here one key coding switch per relay is effective. The switching hysteresis is in this case 1 percent. In operating mode hysteresis, both relays are synchronous. Here, the upper and lower switching point (switch-on point and switch-off point) can be selected separately with the two key coding switches. The relays can work in the operating current principle or the closed-circuit current principle in both operating modes. This can also be selected at the function keys. The efficient wide range power pack allows the supply with all established supply networks or voltage levels. Input, output and supply voltage are separated from each other galvanically with high isolation.

Application

Switching of limiting values on active standard signals, which correspond to, for instance, flows, height levels or temperatures.

Specific characteristics

- analog inputs for current and voltage
- two potential-free changeover
- simple point setting using coded key
- wide range power supply
- no software
- status LED

Business data

Order number
AD-MK 330 GS

Technical specifications	
Current inputs	
Measuring range	0 ... $20 \mathrm{~mA} / 4$... 20 mA
Input resistance	50 Ohm
Input voltage	
Measuring range	0 ... 10 V
Input resistance	400 kOhm
Relay outputs A/B	
Contact type	potential free changeover
Max. AC-breaking capacity	250 V AC, 2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos ($ phi) $=0,4$	2* 10^{5}
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Transmission behaviour	
Setting accuracy	1% (1 Digit)
Accuracy switching threshold	max. +/-1\% from end value
Temperature influence	+/-100 ppm/K of full scale
Factory switching hysteresis	Switching threshold - 1% of end value
Response time	$\sim 100 \mathrm{~ms}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,3 VA / 1,5 W
Housing	
Manner of fastening	DIN rail 35mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. $2,5 \mathrm{~mm}^{2}$
Connection method	screw clamp
Bolting torque terminals	0,5 Nm
Weight	$\sim 200 \mathrm{~g}$
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 6{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{1)}$	EN 61326-1
Emitted interference "During electromagnetic disturbance minor	EN 55011, CISPR11 CI. B, Gr. 1 anges in output signal are possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	1
Pollution degree	2
Galvanic isolation, test voltages	
Input/relays	4 kV (1 min)
Input/power-supply	3 kV (1 min)
Relays/power supply	4 kV (1 min)
Relays with each other	3 kV (1 min)
Protective systems	
Input	overvoltage
${ }_{1 / 2}$ Power supply Prin	Overvoltage, overtemperature

Limit-switch For Standard Signals

Block and wiring diagram

Dimensions

Circuit examples

Limit Switch

Supply-limit-switch

Description

The supply-limit-switch AD-SMK 330 GS serves the switching of limiting values on transmitter signals. The device has an $0 . .20 \mathrm{~mA}, 4 . .20 \mathrm{~mA}$ input and an $0 . .10 \mathrm{~V}$ input and a current-limited transmitter feed. With this, 2 -wire and 3 -wire transmitter can be supplied and measured. With its two potential-free change-over contacts, the AD-SMK 330 GS can switch maximal two independent limiting values. The switching thresholds can be set at the front with the aid of the integral key coding switch in percent steps. The status of the relevant relay is indicated via an LED at the front. The AD-SMK 330 GS has two different operating modes, which can be selected via the function keys. Either two independent limiting values can be switched, whereby here one key coding switch per relay is effective. The switching hysteresis is in this case 1 percent. In operating mode hysteresis, both relays are synchronous. Here, the upper and lower switching point (switch-on point and switch-off point) can be selected separately with the two key coding switches. The relays can work in the operating current principle or the closed-circuit current principle in both operating modes. This can also be selected at the function keys. The efficient wide range power pack allows the supply with all established supply networks or voltage levels. Input, output and supply voltage are separated from each other galvanically with high isolation.

Application

Switching of limiting values on active standard signals, which correspond to, for instance, flows, height levels or temperatures.

Specific characteristics

- analog inputs for current and voltage
- current limited transmitter supply
- two potential-free changeover
- simple point setting using coded key
- wide range power supply

Business data

Order number
AD-SMK 330 GS

Technical specificat	
Current inputs Measuring range Input resistance	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \\ & 50 \mathrm{Ohm} \end{aligned}$
Input voltage Measuring range Input resistance	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 400 \mathrm{kOhm} \end{aligned}$
Transmitter supply Voltage open circuitffull load Current limit	less then $21 \mathrm{~V} /$ higher 18 V ca. 30 mA
Relay outputs A/B Contact type Max. AC-breaking capacity Max. DC-breaking capacity Switching operations Mechanical AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$ AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$ DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	potential free changeover 250 V AC, 2 A AC, 50 Hz 50 V DC, 2 A DC 10^{7} $6 * 10^{5}$ $2 * 10^{5}$ $2 * 10^{5}$
Transmission behaviour Basic accuracy Temperature influence Response time	1 \% (1 Digit) +/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale 100 ms
Supply Voltage range AC Nominal voltage AC Voltage range DC Nominal voltage DC Power consumption AC / DC	$\begin{aligned} & 50 \ldots 253 \vee \mathrm{AC}, 50 / 60 \mathrm{~Hz} \\ & 230 \mathrm{~V} \mathrm{AC} \\ & 20 \ldots 253 \mathrm{~V} C \\ & 24 \mathrm{~V} \mathrm{DC} \\ & 2,4 \mathrm{VA} / 1,8 \mathrm{~W} \end{aligned}$
Housing Manner of fastening Type of protection Connector cross section Weight	DIN rail 35 mm (EN 50022) IP 20 max. 2,5 mm 2 $\sim 200 \mathrm{~g}$
Environmental conditions Ambient temperature Storage and transport	$\begin{aligned} & -10 \ldots 50^{\circ} \mathrm{C} \\ & -10 \ldots 60^{\circ} \mathrm{C} \text { (no condensation) } \end{aligned}$
EMC Product family standard ${ }^{1)}$ Emitted interference ${ }^{1)}$ During electromagnetic disturbance minor c	EN 61326-1 EN 55011, CISPR11 CI. B, Gr. 1 anges in output signal are possible.
Electrical safety requirements Product family standard Overvoltage category Pollution degree	$\begin{aligned} & \text { EN 61010-1 } \\ & \text { II } \\ & 2 \end{aligned}$
Galvanic isolation, test voltag Input/relays Input/power-supply Relays/power supply Relays with each other	s 4 kV (1 min) 3 kV (1 min) 4 kV (1 min) 3 kV (1 min)
Protective systems Input Power supply	overvoltage over voltage, over current and over temperature

Block and wiring diagram

Circuit examples

Description

The three-phase voltage monitor AD-UW 60 GT monitors all three phases in the three-phase system for overvoltage, undervoltage, phase sequence and phase symmetry. If one or more faults occur, the quiescent current relay will fail. The state of the three phases and the error state is indicated by LEDs. The device is powered by the measuring voltage, therefore the wiring of a separate supply is eliminated. The switching points for overvoltage, undervoltage and switching delay can be set quickly via separate trimmers.

Application

AC motors, Overhead cranes, Trolleys, Goods lifts, Conveyor belts

Specific characteristics

- Setting the limits for undervoltage, overvoltage and switching delay via the front panel
- Check all relevant sizes for a wide variety of purposes
- Display of the phase voltages by green LEDs
- Display of the relay by orange LED
- No separate power supply necessary therefore less wiring effort
- Relay is energized in the good range

Business data

Order number

AD-UW 60 GT

Technical specifications

Voltage inputs/supply

Nominal voltage
Connection method
Auxiliary voltage
Measurement and supply
range
Max. power consumption
Setting ranges
Undervoltage
Overvoltage
Delay

Response values

Asymmetry
Hysteresis
Phase loss

Timing

Start delay
Sampling period

Notifications

L1, L2, L3 (green)

Relais (orange)

Relay output

Maximum switching load AC
Maximum switching load DC
Contact construction
$230 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$
3 phases + neutral conductor
all three phases
150 ... 253 V AC
4 VA

170 ... 229 V AC
231 ... 250 V AC
$0,1 \ldots 10 \mathrm{~s}$
10% of nominal voltage
10% overvoltage - undervoltage
~ 10 \% der Nennspannung

1 s
50 ms
on: Voltage OK
Blinking: Error, Delay is running
Off: Error
On: Relay tightened, everything OK Blinking: Relay dropped, error

Galvanic isolation, test voltages
Mains side to relay output $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Housing

Terminals, wire cross section
Type of protection
Connection method
Bolting torque terminals
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport
Electrical safety requirements
Product family standard EN
Overvoltage category III
Pollution degree 2
Safety measurement
Measurement category
EMC
Product family standard EN 61326-1 ${ }^{11}$
Emitted interference
$250 \mathrm{~V}, 2 \mathrm{~A}$
$50 \mathrm{~V}, 2 \mathrm{~A}$
potential-free changeover
${ }^{1)}$ During checking, slight signal deviations are possible.
${ }^{2}$)Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio communications in such environments

Three-phase Voltage Monitor

Display and operating elements

Block and wiring diagram

Dimensions

Diagrams

Description

The AD-LW 110 GS monitors the load condition of inductive loads. The main application is asynchronous motors in the 1- or 3-phase network, the load of which is greatly changed. The device makes an evaluation of the cos-phi value and an undervoltage monitoring. Exceeding the set limit values triggers a contact. The switching states are indicated on the front side by LEDs. The measuring principle for the cos-phi is based on the evaluation of the phase shift between voltage and current in one phase. The actual measured variable is therefore the phase angle between voltage and current. The setting value of the cos-phi or of the phase angle is therefore only correct for sinusoidal quantities. The phase shift is almost inverse to the load. A cos-phi of $0\left(=90^{\circ}\right)$ thus corresponds to a low load while a cos-phi of $1\left(=0^{\circ}\right)$ corresponds to a large load. An external current transformer can be connected to the current input of the device. Thanks to the integrated, efficient switching power supply, operation is possible in a wide supply voltage range.

Application

Load monitoring of asynchronous machines, e.g. Pumps and drives.

Specific characteristics

- Connection of external current transformer possible
- Wide range power supply
- Limits can be set via potentiometer
- 2 potential-free normally open contacts
- LED display of the relay states

Business data
 Order number

AD-LW 110 GS

Technical specifications	
Current input (L1)	
Measuring range	0... 1/5 A AC (alternatively)
Permanent overload	50 \%
Short-term overload 3 s	100%
Voltage input (L1, L2, L3)	
Measuring range	180 ... 253 V
Input resistance	1 MOhm
Relay outputs	
Maximum switching load AC	$230 \mathrm{~V}, 1 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 1 \mathrm{~A}$
Contact construction	closing contact
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 1 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	600000
At 230V/1 A AC, $\cos (\mathrm{phi})=0,4$	200000
At $24 \mathrm{~V} / 1$ A DC	200000
Switching hysteresis	3% of the measuring range
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,5 \mathrm{~W}$
Transmission behaviour	
Basic accuracy	<2\%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 50 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 120 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	1
Pollution degree	2
Galvanic isolation, test voltages	
Input / relay output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power supply / relay output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay 1 / relay 2	$2 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Power supply	electrical surge protection
${ }^{1 /}$ During checking, sight signal deviations are	possible.

Technical specifications

保

Measuring range
A AC (alternatively)
Permanent overload
50 \%
100 \%

Relay outputs

aximum switching load AC
1
$50 \mathrm{~V}, 1$ A
closing contact
10000000
mechanical
At $230 \mathrm{~V} / 1$ A AC, $\cos (\mathrm{phi})=1 \quad 600000$ Al2 VII A AC, cos(phi) 0,4

Switching hysteresis $\quad 3 \%$ of the measuring range
Supply
Voltage range AC
Voltage range DC
Nominal voltage DC
20 ... 253 V DC
24 V DC
4 VA / 2,5 W

ransmission behaviour

Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Terminals, wire cross section
Bolting torque terminals
$0,5 \mathrm{Nm}$
$\sim 120 \mathrm{~g}$
35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Product family standard Emitted interference

EN 55011, CISPR11 CI. B, Gr. 1
trical safety requirements

Galvanic isolation, test voltages

Protection circuits

Power supply electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Dimensions

Multifunction Transducer

Description

The digital multi-function measuring transformers of series VarioCheck AD-VC 1 are freely programmable digital measuring transducers with two analogue outputs and up to 2 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. VarioCheck AD-VC 1 fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, timedelayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- bipolar current input
- bipolar mV voltage input
- voltage input
- Power supply for 2-wire transmitters
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C; internal or external reference junction
- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Resistance, Potentiometer input
- Sensor error detection for thermocouples and resistance thermometers
- Input of a characteristic curve possible
- Automatic or manual simulation operation
- 2 bipolar current or voltage output
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-VC1 GVD-R0 AD-VC1 GVD-R2

Accessory (optional)

Operating module
Control panel with RS-485
USB programming adapter
Configuration software

without relay

two relays

AD-VarioControl
AD-VarioConnect
AD-VarioPass
AD-Studio

Technical specifications

Input current
Measuring range
Input resistance
Basic accuracy
Transmitter supply
Off-load voltage
Voltage at 20 mA
Current limit
Input voltage
Measuring ranges
Input resistance
Basic accuracy
Input voltage mV
Measuring ranges

Input resistance
Basic accuracy

Thermocouples

Comparative place:
Internal
External
To DIN EN 60584:
measuring range type J measuring range type T measuring range type K measuring range type E measuring range type N basic accuracy
To DIN EN 60584:
measuring range type S
measuring range type R
measuring range type B
basic accuracy
After standard ASTM E988:
measuring range type C
basic accuracy
$-24 \ldots+24 m A D C$
20 Ohm
$4 \mu \mathrm{~A}$
$24,0 \mathrm{~V}$
$18,0 \mathrm{~V}$
$\sim 25 \mathrm{~mA}$
$0 \ldots+12 \mathrm{~V} D C$
1 MOhm
1 mV
$-15 \ldots+15 \mathrm{mV}$
$-30 \ldots+30 \mathrm{mV}$
$-60 \ldots+60 \mathrm{mV}$
$-125 \ldots+125 \mathrm{mV}$
$-250 \ldots+250 \mathrm{mV}$
1 MOhm
$20 \mu \mathrm{~V}$
measurement with sensor in the device connecting terminals Cold junction temperature selectable by parameters

$$
\begin{aligned}
& -200 \ldots+1200^{\circ} \mathrm{C} \\
& -200 \ldots+400^{\circ} \mathrm{C} \\
& -200 \ldots+1360^{\circ} \mathrm{C} \\
& -200 \ldots+1000^{\circ} \mathrm{C} \\
& -200 \ldots+1300^{\circ} \mathrm{C} \\
& 1 \mathrm{~K} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& +400 \ldots+1800^{\circ} \mathrm{C} \\
& 2 \mathrm{~K} \\
& 0 \ldots+2320^{\circ} \mathrm{C} \\
& 2 \mathrm{~K}
\end{aligned}
$$

Multifunction Transducer

Technical specifications	
Resistance input	
Resistance thermometer inputs DIN EN 60751: Pt100, Pt500 and	
Pt1000 DIN 43760: Ni100, Ni500 and Ni1000	
measuring range Pt	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
measuring range Ni	$-60 \ldots+230^{\circ} \mathrm{C}$
smallest measuring spans	20 K
short circuit detection	<20 Ohm
basic accuracy	0,2 K
Linear resistance	
measuring range	0 ... 4000 Ohm
basic accuracy	0,1 Ohm
Connection method	2-, 3- oder 4-wire system
Sensor supply	$100 \mu \mathrm{~A}$
Max line resistance ${ }^{1)}$	$50 \mathrm{Ohm} / \mathrm{cable}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als	Offset in die Messung ein.
Potentiometer input	
Connection method	3 -wire system
Max. Resistance	50 Ohm ... 100 kOhm
Sensor supply	< $=500 \mu \mathrm{~A}$
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	20 HAss
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	10 mVss
Relay outputs A/B	
Contact type	potential free changeover
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Transmission behaviour	
Linearity error	<0,2\% of the measuring range
Rise time	500 ms (0... 90%, 100... 10%)
Rise time (temperature input)	< 1s (0... $90 \%, 100 . . .10 \%$)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of the measuring range

Block and wiring diagram

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Power consumption with operating module AC / DC

Housing

Dimensions (W×HxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature

Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 Cl. B, Gr. 1
${ }^{1)}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input to output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
In -/output to auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
Rel. A Rel: two LEDs for relays A and B in red
Rel. B on - relay activated
AD-PC: Communication interface for configuration by a PC Communication interface for VarioControl

Dimensions

Multifunction Transducer

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-VC 1 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40101	2	Input signal	InUnit	7	1	0
40103	2	Cold-junction temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40301	2	Output signal 1	OutUnit	7	1	1
40303	2	Output signal 2	OutUnit	7	1	1
40601	1	Relay state A		3	1	1
40602	1	Relay state B		3	1	1
40801	2	Scaled input	ScUnit	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Multifunction Transducer

AD-VC 3 GF

 AD-VC 3 GVF
Description

The digital multi-function measuring transformers of series VarioCheck AD-VC 3 are freely programmable digital measuring transducers with two analogue outputs and up to 4 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. Enter all characteristics directly on the device or use the configuration software „AD-Studio". VarioCheck ADVC 3 fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, time-delayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- Bipolar voltage/current inputs
- Supply of 2-/3-wire transmitter
- Potentiometer input
- Current and voltage output, differently scalable and can be utilised simultaneously
- Error message with missing or defective sensor at measuring range 4-20 mA
- LCD for display of different operating modes, lit in several colours (R/Y/B).
- Freely definable scaling of the quantity to be measured through stating range, decimal point position and unit from the list or defined unit.
- Zoom function, expanded scale, linearizing, inverse mode
- Learning Mode Range
- Automatic or manual simulation operation
- Monitoring of the measuring signal with up to 4 freely adjustable limiting values
- Slave pointer function (saving min. and max. value)
- Locking the parameterizing via edit lock
- Non-volatile saving of all set parameter
- Menu languages switchable to: German, English
- Housing GVF, GF and EV
- in the housing GVF Pluggable and codable terminal strips

Business data

Order number
AD-VC 3 GF-R0
AD-VC 3 GF-R2
AD-VC 3 GF-R4
AD-VC 3 GVF-R0
AD-VC 3 GVF-R2
AD-VC 3 GVF-R4
AD-VC 3 EV-R2-24V
AD-VC 3 EV-R2-230V

Bauform GF, without relay Bauform GF, two relays Bauform GF, four relays design GVF, without relay design GVF, two relays design GVF, four relays Bauform EV, zwei Kontaktausgänge, 24 VDC-Versorgung Bauform EV, zwei Kontaktausgänge, 230 VAC-Versorgung

Technical specifications

Input current Measuring range Accuracy Input resistance
Voltage input 10V Measuring range
Accuracy
Input resistance
Voltage input 1V Measuring range Accuracy Input resistance
Potentiometer input Connection method Max. Resistance
Transmitter supply
Off-load voltage $24,5 \mathrm{~V}$

Voltage at 20 mA
Current limit
Output current
Max. output range
Accuracy
Max. burden
Residual ripple

Output voltage

Max. output range
Accuracy
Min. burden
Residual ripple

Resolution

Input 13 bit

Output 10 bit

Multifunction Transducer

Technical specifications	
Relay outputs A...D	
Contacts R2 / R4	2 contacts / 4 contacts
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	2* 10^{5}
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	2* 10^{5}
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Display	
Graphic-LCD	42×64 Pixel, background RGB lights
Digital display	4 -digit, can be configured
Display function	scaled input signal, input signal, output, limits, scaled dimension as quasi analogue bar, scaling unit
Transmission behaviour	
Linearity error	0,2 \% of full scale
Rise time	100 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Power supply GF/GVF	20 ... 253 V DC / 50 ... 253 V AC
Power supply EV	20..30 VDC or 50... 253 VAC
Max. power consumption GF	3,0 W / 5,3 VA
Max. power consumption GVF	2,6 W/5 VA
Max. power consumption EV	2,6 W/5 VA

Housing GF	
Dimensions (WxHxD)	$38,5 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 215 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35mm
Housing GVF	
Dimensions (WxHxD)	$33 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 200 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35mm
Housing EV	
Dimensions (WxHxD)	30,48x128,4×165
Type of protection	IP00
Connection method	32-pin male connector
Weight	$\sim 300 \mathrm{~g}$
Manner of fastening	19"-Eurocard
Environmental conditions	
Ambient temperature	$-10 \ldots 60^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{1)}$	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
${ }^{1 /}$ During electromagnetic disturbance minor co	anges in output signal are possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	2,5 kV (1 min)
Signal/auxiliary voltage	3 kV (1 min)

Multifunction Transducer

Block and wiring diagram

Wiring: casing-type GF and GVF

Wiring: casing-type EV (europe-card)

Dimensions

Multifunction Transducer

Description

The digital multi-function measuring transformer of series VarioCheck AD-VC3B GVF are freely programmable digital measuring transformer with two analogue outputs and up to 4 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. The input of all characteristics is carried out via the configuration software „AD-Studio". VarioCheck AD-VC3B fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, time-delayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- Bipolar voltage/current inputs
- Supply of 2-/3-wire transmitter
- Potentiometer input
- Current and voltage output, differently scalable and can be utilised simultaneously
- Zoom function, expanded scale, linearizing, inverse modus
- Monitoring of the measuring signal with up to 4 freely adjustable limiting values
- Non-volatile saving of all set parameter
- Pluggable and codable terminal strips
- Parameter configuration via optional PC setup program "AD-Studio"

Business data

Order number

AD-VC 3B GVC-R0
AD-VC 3B GVF-R2
AD-VC 3B GVF-R4
without relay
two relays
four relays

Technical specifications	
Input current	
Measuring range	$-20 \ldots+20 \mathrm{~mA}$
Accuracy	$5 \mu \mathrm{~A}$
Input resistance	60 Ohm
Voltage input 10V	
Measuring range	$-10 \ldots+10 \mathrm{~V}$
Accuracy	2,5 mV
Input resistance	1 MOhm
Voltage input 1V	
Measuring range	-1 ... + 1 V
Accuracy	$250 \mu \mathrm{~V}$
Input resistance	> 1 MOhm
Potentiometer input	
Connection method	3 -wire system
Max. Resistance	100 Ohm ... 100 kOhm
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	19,5 V
Current limit	$\sim 25 \mathrm{~mA}$
Output current	
Max. output range	0 ... 20,4 mA
Accuracy	$\sim 20 \mu \mathrm{~A}$
Max. burden	500 Ohm
Residual ripple	20μ Ass
Output voltage	
Max. output range	0 ... 10,2 V
Accuracy	$\sim 10 \mathrm{mV}$
Min. burden	5 kOhm
Residual ripple	10 mVss
Resolution	
Input	13 bit
Output	10 bit
Relay outputs A...D	
Contacts GVF-R2 / GVF-R4	2 changeover contact / 4 changeover contact
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	35 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos ($ phi) $=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	2* 10^{5}
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	100 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Supply voltage	20 ... 253 V DC / 50 ... 253 V AC
Max. power consumption	2,6 W/5 VAC

Multifunction Transducer

AD-VC 3B GVF

Technical specifications

Housing

Manner of fastening
Type of protection
Connector cross section
Weight
IN rail 35mm (EN 50022)
IP 20
max. 2,5 mm 2
~ 200 g

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 60^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Block and wiring diagram

EMC

Product family standard
Discharge static electricity, ESD
Electromagnetic fields ${ }^{1)}$
Fast transients, burst Impulse voltage, surge
Conducted HF-Signals ${ }^{1)}$
Emitted interference

EN 61326-1
IEC 61000-4-2
IEC 61000-4-3
IEC 61000-4-4
IEC 61000-4-5
IEC 61000-4-6
EN 55011, CISPR11 CI. B, Gr. 1
anges in output signal are possible.

Input/output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Dimensions

Description

The digital temperature measuring converter of series VarioCheck VC5B are freely programmable digital measuring transducer with two analogue outputs and up to 4 limiting value relays. The input of all characteristics directly on the device, or use the configuration software "AD-Studio". VarioCheck fulfils all tasks of a universal measuring value recording through integral function modules such as selectable relay functions, simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C or inputs a mV/Tcharacteristic curve. Selectable internal or external reference junction
- A bipolar mV-Voltage input. Free linearizing curves possible.
- Current- and voltage input different scaleable and simultaneously useful. Must not conntect the clamps 8 and 9.
- Galvanic 3-circuit separation of input, output and supply.
- LCD for display of different operating modes, lit in several colours (R/Y/B).
- Freely definable scaling of the quantity to be measured through stating range, decimal point position and unit from the list or defined unit.
- Zoom function, expanded scale, linearizing, inverse modus.
- Monitoring of the measuring signal with up to 4 freely adjustable limiting values.
- Monitoring functions such as limiting values, window function or signal trend each with relay.
- Non-volatile saving of all set parameters.

Business data

Order number

AD-VC 5 GVF-R0
AD-VC 5 GVF-R2
without relay

AD-VC 5 GVF-R4
two relays
four relays

Technical specifications

Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751

Measuring range	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Resolution	16 Bit
Accuracy	0,5 K
Smallest measuring spans	20 K
Max line resistance ${ }^{1)}$	10 Ohm/cable
Sensor supply	
Pt100	1 mA
Pt500, Pt1000	$210 \mu \mathrm{~A}$

Resistance thermometer inputs $\mathrm{Ni} 100, \mathrm{Ni} 500, \mathrm{Ni} 1000$ to DIN EN 43760

Measuring range	$-60 \ldots+230^{\circ} \mathrm{C}$
Connection method	$2-, 3-$ oder 4 -wire system
Resolution	16 Bit
Accuracy	$0,5 \mathrm{~K}$
Smallest measuring spans	20 K
Max line resistance ${ }^{\text {1) }}$	$10 \mathrm{Ohm} /$ cable
Sensor supply	
Ni100	1 mA
Ni500, Ni1000	$210 \mu \mathrm{~A}$

Thermocouples

Comparative place:

Internal
External
Resolution
Accuracy
Measuring range type J
To DIN EN 60584:
Measuring range type T
Measuring range type K
Measuring range type E
Measuring range type N
Measuring range type S
Measuring range type R
Measuring range type B
After standard ASTM E988:
Measuring range type C
Smallest measuring spans

Voltage inputs

Measuring ranges
measurement with LM35 in the device connecting terminals
Cold junction temperature selectable

by parameters

16 Bit
0,2 \% of measuring range
$-200 \ldots+1200^{\circ} \mathrm{C}$
$-200 \ldots+400^{\circ} \mathrm{C}$
$-200 \ldots+1360^{\circ} \mathrm{C}$
$-200 \ldots+1000^{\circ} \mathrm{C}$
$-200 \ldots+1300^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$+400 \ldots+1800^{\circ} \mathrm{C}$
$0 \ldots+2320^{\circ} \mathrm{C}$
100 K
$-18 \ldots+18 \mathrm{mV}$
$-36 \ldots+36 \mathrm{mV}$
$-72 \ldots+72 \mathrm{mV}$
$-144 \ldots+144 \mathrm{mV}$

Multifunction Transducer

Temperature Measuring Converter

Technical specifications

Current output 20 mA

Output range	$0 \ldots 20,4 \mathrm{~mA}$
Resolution	10 Bit
Accuracy	$20 \mu \mathrm{~A}$
Max. burden	500 Ohm
Residual ripple	$20 \mu \mathrm{Ass}$

Voltage output 10 V

Output range	$0 \ldots 10,2 \mathrm{~V}$
Resolution	10 Bit
Accuracy	10 mV
Min. burden	5 kOhm
Residual ripple	10 mVss

Werden Stromausgang und Spannungsausgang gleichzeitig benutzt, dürfen die beiden Kreise nicht verbunden werden.

Relay outputs A..D

Max switching voltage
Max switching current AC
Max switching voltage
Max switching current DC
AC 250 V AC
2 A AC
DC 50 V DC
2 A DC

Display

Graphic-LCD
Digital display
Display function

Transmission behaviour

Sampling rate
Linearity error
Temperature influence

Supply

Supply voltage	$50 \ldots 253 \mathrm{~V} \mathrm{AC}$
	$20 \ldots 253 \mathrm{~V} \mathrm{DC}$
Max power consumption at 24V DC	$2,6 \mathrm{~W}$
Max power consumption at	5 VA

Max power consumption at 5 VA
230V AC
Housing
Dimension BxHxT 33x110x128 mm
Manner of fastening DIN rail mounting 35mm, EN 50022
Type of protection
Connection method
Wire cross section
Weight
Environmental conditions
Permissible ambient
temperature
Storage and transport
EMC
Product family standard ${ }^{1)} \quad$ EN 61326-1
Emitted interference EN 55011, CISR11 CI. B, Gr. 1
${ }^{1)}$ Während der Störeinwirkung sind geringe Signalabweichungen möglich.

Electrical safety requirements

Product family standard EN 61010-1

Galvanic isolation, test voltages

Input to outpu
Input/output to auxiliary $4 \mathrm{kV}, 1 \mathrm{~min}$
voltages
Outputs together no galvanic isolation
Input to the programming interface

2,5 kV, 1 min
no galvanic isolation

Block and wiring diagram

Dimensions

Temperature Measuring Converter

Description

The digital temperature measuring converter of series VarioCheck VC 5B GVF are freely programmable digital measuring transformer with two analogue outputs and up to 4 limiting value relays. The input of all characteristics is carried out via the configuration software AD-Studio. VarioCheck fulfils all tasks of a universal measuring value recording through integral function modules such as selectable relay functions, simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C or inputs a mV/Tcharacteristic curve. Selectable internal or external reference junction
- A bipolar mV-Voltage input. Free linearizing curves possible.
- Current- and voltage input different scaleable and simultaneously useful. Must not conntect the clamps 8 and 9.
- Galvanic 3-circuit separation of input, output and supply.
- Freely definable scaling of the quantity to be measured through stating range, decimal point position and unit from the list or defined unit.
- Zoom function, expanded scale, linearizing, inverse modus.
- Monitoring of the measuring signal with up to 4 freely adjustable limiting values.
- Monitoring functions such as limiting values, window function or signal trend each with relay.
- Non-volatile saving of all set parameters.

Business data

Order number

AD-VC 5B GVC-R0
AD-VC 5B GVF-R2
AD-VC 5B GVF-R4
without relay
two relays
four relays

Technical specifications

Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751

Measuring range	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Resolution	16 Bit
Accuracy	0,5 K
Smallest measuring spans	20 K
Max line resistance ${ }^{1)}$	10 Ohm/cable
Sensor supply	
Pt100	1 mA
Pt500, Pt1000	$210 \mu \mathrm{~A}$

Resistance thermometer inputs Ni100, Ni500, Ni1000 to

DIN EN 43760

Measuring range	$-60 \ldots+230^{\circ} \mathrm{C}$
Connection method	$2-, 3-$ oder 4 -wire system
Resolution	16 Bit
Accuracy	$0,5 \mathrm{~K}$
Smallest measuring spans	20 K
Max line resistance ${ }^{\text {1) }}$	$10 \mathrm{Ohm} /$ cable
Sensor supply	
Ni100	1 mA
Ni500, Ni1000	$210 \mu \mathrm{~A}$

Thermocouples

Comparative place:

Internal
External
Resolution
Accuracy
To DIN EN 60584:
Measuring range type J
Measuring range type T
Measuring range type K
Measuring range type E
Measuring range type N
Measuring range type S
Measuring range type R
Measuring range type B
After standard ASTM E988:
Measuring range type C
Smallest measuring spans

Voltage inputs

Measuring range
measurement with LM35 in the device connecting terminals
Cold junction temperature selectable

by parameters

16 Bit
$0,2 \%$ of measuring range
$-200 \ldots+1200^{\circ} \mathrm{C}$
$-200 \ldots+400^{\circ} \mathrm{C}$
$-200 \ldots+1360^{\circ} \mathrm{C}$
$-200 \ldots+1000^{\circ} \mathrm{C}$
$-200 \ldots+1300^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$+400 \ldots+1800^{\circ} \mathrm{C}$
$0 \ldots+2320^{\circ} \mathrm{C}$
100 K

$$
\begin{aligned}
& -18 \ldots+18 \mathrm{mV} \\
& -36 \ldots+36 \mathrm{mV} \\
& -72 \ldots+72 \mathrm{mV} \\
& -144 \ldots+144 \mathrm{mV}
\end{aligned}
$$

Temperature Measuring Converter

Technical specifications

Current output 20 mA

Output range	$0 \ldots 20,4 \mathrm{~mA}$
Resolution	10 Bit
Accuracy	$20 \mu \mathrm{~A}$
Max. burden	500 Ohm
Residual ripple	$20 \mu \mathrm{Ass}$

Voltage output 10 V

Output range $0 \ldots$... 10,2 V
Resolution 10 Bit
Accuracy $\quad 10 \mathrm{mV}$
Min. burden 5 kOhm

Residual ripple
10 mVss
Werden Stromausgang und Spannungsausgang gleichzeitig benutzt, dürfen die beiden Kreise nicht verbunden werden.

Relay outputs A..D

Max switching voltage	AC 250 V AC
Max switching current AC	2 A AC
Max switching voltage	DC 50 V DC
Max switching current DC	2 A DC
Transmission behaviour	
Sampling rate	1 measure/s
Linearity error	0,2\% of full scale
Temperature influence	+/-100 ppm/K of full scale
Supply	
Supply voltage	$50 . .253 \mathrm{~V}$ AC
	20 .. 253 V DC
Max power consumption at 24V DC	2,6 W
Max power consumption at 230V AC	5 VA

Block and wiring diagram

Housing

Dimension
Manner of fastening
Type of protection
Connection method
Wire cross section
Weight

Environmental conditions

Permissible ambient
temperature
Storage and transport
EMC
Product family standard
Discharge static electricity,
ESD
Electromagnetic fields ${ }^{1}$
Fast transients, burst
Impulse voltage, surge
Route controlled HF-signals
Emitted interference

BxHxT $33 \times 110 \times 134 \mathrm{~mm}$
DIN rail mounting 35mm, EN 50022 IP 20
detachable terminal clamp, 5 mm grid
max. $2,5 \mathrm{~mm}^{2}$
ca. 200 g
$-10 \ldots+60^{\circ} \mathrm{C}$
$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
IEC 61000-4-2

IEC 61000-4-3
IEC 61000-4-4
IEC 61000-4-5
IEC 61000-4-6
EN 55011, CISPR11 CI. B, Gr. 1
1"During electromagnetic disturbance minor changes in output signal are possible.

Galvanic isolation, test voltages

$\left.\begin{array}{ll}\begin{array}{l}\text { Input to output } \\ \text { Input/output to auxiliary } \\ \text { voltages }\end{array} & 2,5 \mathrm{kV}, 1 \mathrm{~min} \\ \begin{array}{l}\text { Outputs together } \\ \text { Input to the programming }\end{array} & 4 \mathrm{kV}, 1 \mathrm{~min}\end{array}\right]$ no galvanic isolation
no galvanic isolation

Dimensions

GVC

GVF

Multifunction Transducer

Description

The digital multi-function measuring transformer of series VarioCheck AD-VC 4S FE are freely programmable digital measuring transformer with two analogue outputs and up to 4 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. The input of all characteristics directly on the device, or use the configuration software "AD-Studio". VarioCheck AD-VC 4S fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, timedelayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- Bipolar voltage inputs
- Unipolar current input
- Supply of 2-/3-wire transmitter
- Potentiometer input
- Current and voltage output, differently scalable and can be utilised simultaneously
- Error message with missing or defective sensor at measuring range 4-20 mA
- Backlite LCD for display of different operating modes
- Freely definable scaling of the quantity to be measured through stating range, decimal point position and unit from the list or defined unit.
- Zoom function, expanded scale, linearizing, inverse modus
- Learning Mode Range
- Automatic or manual simulation operation
- Monitoring of the measuring signal with up to 4 freely adjustable limiting values
- Slave pointer function (saving min. and max. value)
- Locking the parameterizing via edit lock
- Non-volatile saving of all set parameter
- Menu languages switchable to: German, English, French, Italian
- Pluggable and codable terminal strips

Business data

Order number

AD-VC 4S FE-R0
AD-VC 4S FE-R2
AD-VC 4S FE-R4
without relay
two relays
four relays

Technical specifications

Input current

Measuring range
Accuracy
Input resistance

Voltage input 10V

Measuring range
Accuracy
Input resistance
Voltage input 5V
Measuring range
Accuracy
Input resistance
Voltage input 1V
Measuring range
Accuracy
Input resistance
Voltage input 100 mV
Measuring range
Accuracy
Input resistance
Potentiometer input Connection method Max. Resistance

Transmitter supply

Off-load voltage
Voltage at 20 mA
Current limit
Output current
Max. output range
Accuracy
Max. burden
Residual ripple
Output voltage

Variants	R2, R4
Max. output range	$0 \ldots 10 \mathrm{~V}$
Accuracy	$\sim 10 \mathrm{mV}$
Min. burden	10 kOhm
Residual ripple	10 mVss

Resolution

Input	10 bit
Output	10 bit

Multifunction Transducer

Technical specifications

Relay outputs A...D
 Contacts R2 / R4

Max. AC-breaking capacity
Max. DC-breaking capacity
Switching operations
Mechanical
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos ($ phi $)=1$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$

Display

Graphic-LCD
Digital display
Display function

Transmission behaviour
Linearity error
Rise time
Temperature influence

Supply

Supply voltage
Max. power consumption

2 changeover contact / 4 changeover contact
250 V AC, 2 A AC, 50 Hz
50 V DC, 2 A DC
10^{7}
$6 * 10^{5}$
$2 * 10^{5}$
$2^{*} 10^{5}$
$2 * 10^{5}$

122x32 Pixel, background lit
5-digit, can be configured scaled input signal, input signal, output, limits, scaled dimension as quasi analogue bar, scaling unit
<0,2 \% of full scale
100 ms (output at 90%)
+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale

20 ... 253 V DC / 50 ... 253 V AC
2,6 W / 5 VA

Block and wiring diagram

Housing

Manner of fastening
Dimensions front
Type of protection housing
Connector cross section
Connector cross section
supply
Weight $\sim 320 \mathrm{~g}$

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard ${ }^{1)}$
Emitted interference
${ }^{1}$)During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard EN 61010-1

Galvanic isolation, test voltages

Input/output
$2,5 \mathrm{kV}$ (1 min)
Signal/auxiliary voltage
4 kV (1 min)

Dimensions

Indicating / Operating Module

Description

The removable control modules AD-VarioControl are used to display measured values of a base device (transmitter, isolation amplifiers ...) with a relevant interface. After plugging in, which is also possible during operation of the base device without restrictions, the basic device is automatically read out and the corresponding measured value is displayed. In addition to the display function, access to the parameters and controller functions of the basic device is also possible. The parameter settings can be loaded into the control panel using the backup function and can be restored on a different base device of the same type.
Establishment of a transmitter is usually necessary only once in the operating period of a device, therefore a display and operating elements are not permanently necessary for each device. By using the ADVarioControl in connection with compatible basic equipment, operating elements and displays on each individual device can be dispensed with. This way, the installed devices are tamper-proof and more cost-effective. The AD-VarioConnect has a fieldbus interface with the protocol ModbusRTU via RS485. All measured values of the basic units are available above this.

Application

Control device to display and configuration of DIN rail devices with optional fieldbus.

Specific characteristics

- Removeable (hot-plugged)
- Store and restore of parameters
- LCD for display of different operating modes, lit in several colours (R/Y/B)
- Menu languages switchable to: German, English
- Simulation modus
- Fieldbus interface with Modbus RTU (AD-VarioConnect)

Business data	
Order number	
Control panel	AD-VarioControl
Control panel with RS485	AD-VarioConnect
Basic devices	
Frequency measuring	AD-FM 255 GVD
converter	
Limit-Switch	AD-MK 350 GVD
Temperature Measuring	AD-MV 550 GVD
Converter	
Power measurement transducer	AD-LU 320 GVD / AD-LU 325 GVD
Power measurement	AD-LU 620 GVF / AD-LU 625 GVF
transducer	
Isolation amplifier	AD-TV 400 GVD
Isolation amplifier	AD-TV 420 GVD
AC Isolation Amplifier	AD-TV 588 GVD
Multifunction transducer	AD-VC 1 GVD

Technical specifications

Display	
Type	LCD graphic
Dimensions (WxH)	$18 \times 13 \mathrm{~mm}$
Resolution	42X56 Pixel
Lighting	RGB
Operation	
Type	3 short-stroke keys
RS485 Bus (Varioconnect)	
Protocol	Modbus-RTU
Data format (default)	19200, e, 8, 1
Max. bus users	32
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
Supply	
Supply voltage	5 DC
Max. power consumption	0,2 W
Housing	
Dimensions (WxHxD)	$20 \times 86 \times 14 \mathrm{~mm}$
Dimensions with clamp	20x95x14 mm
Type of protection	IP 20
Weight	20 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages (VarioConnect)	
RS485-bus to basic device	1,5 kV

Indicating / Operating Module

AD-VarioControl

Dimensions

Isolation Amplifier

Description

The isolation amplifier AD-TV 400 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. Due to its current-sinking output, transmitter signals can also be separated or converted. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/- 1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- bipolar current or voltage output
- current sink output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier
AD-TV 400 GVD

Accessory (optional)

Operating module
USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring range	-50 ... + 50 mA DC
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100 \mathrm{~V}$ DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	19,5 V
Current limit	$\sim 25 \mathrm{~mA}$
Output current	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Output voltage	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Current sink output	
Current sink	0/4 ... 20 mADC
Max. voltage to be applied	35 V DC
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... $253 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,4 \mathrm{~W}$
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category
EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,75 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 400 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Isolation Amplifier

Description

The isolation amplifier AD-TV 420 GVD serves the galvanic separation of analogue signals and of transmitter signals. When a 2 -wire transmitter is connected, this will be supplied directly via a galvanically separated and current-limited supply voltage. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software ADStudio. The wide bipolar input measuring range makes this buffer amplifier into the universal type for almost all applications in the area of standard signals and beyond. All supply ranges are covered with the wide range power pack.

Application

Amplification, transformation and electrical isolation of current or voltage signals

Specific characteristics

- bipolar current input (+/- 0,5 mA bis +/- 50 mA)
- bipolar voltage input (+/-1 V bis +/- 100 V)
- Power supply for 2- / 3-wire transmitters
- 2 bipolar current or voltage output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Isolation amplifier

Accessory (optional)

Operating module
USB programming adapter
Configuration software

Test

Modbus Protokoll

GTC

AD-TV 420 GVD

AD-VarioControl / AD-VarioConnect
AD-Variopass
70|AD-Studio
http://www.modbus.org/specs.php|Pr otokoll-Spezifikation der Modbus Organisation agb.pdf|Adamczewski AGB

Technical specifications

Input current	
Measuring range	$-50 \ldots+50 \mathrm{~mA} \mathrm{DC}$
Input resistance	40 Ohm
Input voltage	
Measuring range	$-100 \ldots+100$ V DC
Input resistance	1 MOhm
Transmitter supply	
Off-load voltage	24,5 V
Voltage at 20 mA	19,5 V
Current limit	~ 25 mA
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2 \% of full scale
Rise time	200 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	4,4 VA / 2,8 W
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Isolation Amplifier

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference
EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

Display and operating elements

TV420 GVD
On
on
\square
\square

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Electrical safety requirements

Product family standard
Overvoltage category EN 61010-1

Pollution degree

Galvanic isolation, test voltages

Input/output	$3,51 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$3,75 \mathrm{kV}(1 \mathrm{~min})$

Block and wiring diagram

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-TV 420 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40805	2	Scaled input		7	1	0
40809	2	Input signal	mA / V	7	1	0
40909	2	Output signal 1	mA / V	7	1	1
40911	2	Output signal 2	mA / V	7	1	1

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

AC Isolation Amplifier

AC-Isolation Amplifier/Limit Switch AD-TV 588 GVD

Description

The AD-TV 588 GVD is used for measuring the rms value of alternating current via a built-in current transformer up to 5A or via an external clamp on / split core current transformer up to 600A. The detected current is outputted as a galvanically isolated standard current signal in the range 0 to 20 mA and as a standard voltage signal in the range 0 to 10 volts. An additional relay output can indicate a limit value or a window. All parameters such as range, output range, relay functions, limiting values, etc. can be freely set via the configuration software.

Application

Measuring the current of single-phase loads up to 600A. Monitoring of current consumption to certain limits with hysteresis threshold by limit function. Monitoring a certain range of the current consumption by window function.

Specific characteristics

- Detection of the rms value of alternating currents up to 600A
- Current and voltage output can be used simultaneously
- Relay output, NO
- Wide range power supply. Supply with 24V DC or 230V AC available
- External clamp on/split core current transformers as accessory available
- Configuration information, such as limits, input current, etc. can be adjusted by the customer via configuration software or be specified when ordering
- Operating module as an accessory

Business data

Order number

AC Isolation Amplifier
AD-TV 588 GVD

Accessory (optional)

Split core current transformer
Display/control module
USB programming adapter
Configuration software
AD-KSW 5/50/100/200/400/600 A AC
AD-VarioControl, VarioConnect
AD-VarioPass
AD-Studio

Technical specifications

Input current directly

Measuring range 1 A
Measuring range 5 A
Remark
0 ... 1 A AC
0 ... 5 A AC
DO NOT CONFUSE THE INPUT OF
THE CLAMP ON CURRENT TRANSFORMER.

Current input via Clamp on Current Transformer

Measuring range, Re, Terminals Measuring range, Re,	$0 \ldots 1,66 \mathrm{~mA}$
Terminals	
Measuring range, Re,	$0 \ldots 16,6 \mathrm{~mA}$
Terminals	$0 \ldots 33,3 \mathrm{~mA}$
Measuring range, Re,	(alle AD-KSW Terminals
All current inputs	50 Hz
Rated frequency	$40 \ldots 400 \mathrm{mz}$
Frequency range	2 kHz
Sampling	

All signal outputs

Simultaneous use

Output current
Maximum output range $0 \ldots 20 \mathrm{~mA}$
Resolution
Max. burden
$\sim 10 \mathrm{uA}$
Output voltage
Maximum output range $0 \ldots 10 \mathrm{~V}$
Resolution
$\sim 5 \mathrm{mV}$
Min. burden
1 kOhm

Relay output

Maximum switching load AC
Maximum switching load DC
Contact construction
Switching operations
mechanical
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1 \quad 600.000$
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4 \quad 200.000$
At $24 \mathrm{~V} / 1$ A DC $\quad 200.000$

Transmission behaviour

Maximum linearity error
Rise time 0.. 90%
Temperature influence

Supply

Voltage range AC
Nominal voltage $A C$
Voltage range DC
Nominal voltage DC
Power consumption AC / DC

250 V, 2 A
$50 \mathrm{~V}, 2 \mathrm{~A}$
closing contact
10.000.000

0,5 \% of full scale
200 ms
+/- $100 \mathrm{ppm} / \mathrm{K}$

50 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
230 V AC
20 ... 253 V DC
24 V DC
3 VA / 1,5 W

AC Isolation Amplifier

AC-Isolation Amplifier/Limit Switch

Technical specifications

Housing

Dimensions (W×HxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Manner of fastening	DIN rail 35 mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. $2,5 \mathrm{~mm}^{2}$
Bolting torque screw terminals $0,5 \mathrm{Nm}$ Weight $\sim 120 \mathrm{~g}$ Environmental conditions Operation $-10 \ldots 50^{\circ} \mathrm{C}$ Storage, transport $-10 \ldots 60^{\circ} \mathrm{C}$.	

EMC

Product family standard
Emitted interference
EN 61326-1 "
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
Rel: LED for relay in red
on - relay activated
AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Dimensions

Modbus/RTU Communication

The optional AD-VarioConnect operating module is required for communication via Modbus/RTU. It has an RS-485 interface. The data format is $19200, e, 8,1$. The slave address is 1 . These settings can be changed using the AD-VarioConnect operating module. The following data can be communicated.

Start address	Number of registers	Name	Unit	Data type	read	write
40701	2	Scaled input	A AC	float	1	0
40801	2	Output signal current	mA	float	1	1
40803	2	Output signal voltage	V	float	1	1

Use of the Adamczewski AD-KSW XXX folding current transformers

All AD-KSW XXX folding current transformers provide an output current of 33.33 mA regardless of the input current. Therefore, when using these transformers, ALWAYS use input terminals 7/8.

Temperature Measuring Converter

Description

The digital temperature measuring transformer AD-MV 550 GVD serves the galvanic separation and transformation of resistance transmitter or thermocouples to an impressed output signal (i.e. $0-20 \mathrm{~mA}$). All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional control panel AD-VarioControl or via the programming software AD-Studio. Due to its current-sinking output, transmitter signals can also be galvanic separated or transformed. The wide range power pack covers all supply regions.

Specific characteristics

- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C or inputs a mV/Tcharacteristic curve. Selectable internal or external reference junction
- A bipolar mV-Voltage input. Free linearizing curves possible.
- bipolar current or voltage output
- current sink output
- Operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Temperature Measuring AD-MV 550 GVD
Converter
Accessory (optional)
Operating module USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751

Measuring range	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Accuracy	0,5 K
Smallest measuring spans	20 K
Max line resistance ${ }^{1)}$	10 Ohm/cable
Sensor supply	
Pt100	1 mA
Pt500, Pt1000	$210 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als Offset in die Messung ein.	
Resistance thermometer inputs Ni100, Ni500, Ni1000 to	
DIN EN 43760	
Measuring range	$-60 \ldots+230{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Accuracy	0,5 K
Smallest measuring spans	20 K
Max line resistance ${ }^{1)}$	10 Ohm/cable
Sensor supply	
Ni100	1 mA
Ni500, Ni1000	$210 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswidersta	Offset in die Messung ein.

Thermocouples

Comparative place:

Internal

External

Measuring range type J To DIN EN 60584:
Measuring range type T
Measuring range type K
Measuring range type E
Measuring range type N
Measuring range type S
Measuring range type R
Measuring range type B
After standard ASTM E988:
Measuring range type C
Smallest measuring spans

Voltage inputs

Measuring range
measurement with LM35 in the device connecting terminals Cold junction temperature selectable by parameters
$-200 \ldots+1200^{\circ} \mathrm{C}$
$-200 \ldots+400^{\circ} \mathrm{C}$
$-200 \ldots+1360^{\circ} \mathrm{C}$
$-200 \ldots+1000^{\circ} \mathrm{C}$
$-200 \ldots+1300^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$+400 \ldots+1800^{\circ} \mathrm{C}$
$0 \ldots+2320^{\circ} \mathrm{C}$
100 K
$-18 \ldots+18 \mathrm{mV}$
$-36 \ldots+36 \mathrm{mV}$
$-72 \ldots+72 \mathrm{mV}$
$-144 \ldots+144 m V$

Technical specifications	
Output current	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	40μ Ass
Output voltage	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	30 mVss
Current sink output	
Current sink	0/4 ... 20 mA DC
Max. voltage to be applied	35 V DC
Resolution	
Input	16 bit
Output	12 bit
Transmission behaviour	
Linearity error	0,2\% of full scale
Rise time	600 ms (output auf 90%)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	20 ... 253 V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,4 VA / 1,2 W

Block and wiring diagram

Housing

Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 CI. B, Gr. 1
${ }^{11}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input/output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-MB 550 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40801	2	Input signal	Ohm / mV	7	1	0
40803	2	Cold-junction temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40805	2	Scaled input	${ }^{\circ} \mathrm{C} / \ldots$	7	1	0
40905	2	Output signal 2	mA	7	1	1
40907	2	Output signal 1	mA / V	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16:3	S16:4	U32: 5	S32: 6	float: 7

Limit Switch

Vario - Limit Switch

Description

The limit switch AD-MK 350 GVD serves the switching of limiting values on analogue signals, transmitter signals and resistance thermometer. If a 2-wire transmitter is connected, it will be supplied directly through a galvanic separated and current limited supply voltage. The device has analogue inputs for current, voltage and resistance thermometer, which can be utilised alternatively. The AD-MK 350 GVD can switch maximally two independent limiting values with its two potential-free change-over contacts. The switching thresholds and operating modes can be freely parameterized. This can be carried out via the optional control panel ADVarioControl or via the programming software AD-Studio. The status of the relevant relay is indicated via LED at the front or at the operating module AD-VarioControl.

Application

Switching limit values to active analog signals, 2- / 3-wire transmitters, and resistance thermometers, e.g. Flows, heights or temperatures.

Specific characteristics

- bipolar current input (+/- 0.5 mA to $+/-50 \mathrm{~mA}$)
- bipolar voltage input (+/-1 V to $+/-100 \mathrm{~V}$)
- power supply of 2- / 3-wire transmitters
- two potential-free change-over contacts
- operating module as an accessory
- 23 mm narrow housing with detachable terminal clamp

Business data

Order number

Vario - Limit Switch
AD-MK 350 GVD
Accessory (optional)
Operating module USB programming adapter Configuration software

AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring range	$-50 \ldots+50 \mathrm{~mA} \mathrm{DC}$
Input resistance	40 Ohm
Resolution	16 Bit
Accuracy	$0,1 \%$ of full scale
Input voltage	
Measuring range	$-100 \ldots+100 \mathrm{~V} \mathrm{DC}$
Input resistance	1 MOhm
Resolution	16 Bit
Accuracy	$0,1 \%$ of full scale
Transmitter supply	
Off-load voltage	$24,5 \mathrm{~V}$
Voltage at 20 mA	$17,5 \mathrm{~V}$
Current limit	$\sim 25 \mathrm{~mA}$

Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751
Measuring range
Connection method
Resolution
$-200 \ldots+850^{\circ} \mathrm{C}$

Accuracy 0,6 K
Smallest measuring spans
Max line resistance ${ }^{1)}$
Sensor supply
20 K
10 Ohm/cable
$310 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als Offset in die Messung ein.
Resistance thermometer inputs Ni100, Ni500, Ni1000 to DIN EN 43760

Measuring range	$-60 \ldots+230^{\circ} \mathrm{C}$
Connection method	$2-, 3-$ oder 4 -wire system
Resolution	16 Bit
Accuracy	$0,6 \mathrm{~K}$
Smallest measuring spans	20 K
Max line resistance 1)	$10 \mathrm{Ohm} /$ cable
Sensor supply	$310 \mu \mathrm{~A}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als Offset in die Messung ein.	

Relay outputs A/B

Contact type
Max. AC-breaking capacity
Max. DC-breaking capacity
potential free changeover
250 V AC, 2 A AC, 50 Hz
50 V DC, 2 A DC
Switching operations
Mechanical
10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1 \quad 6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4 \quad 2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$

Transmission behaviour

Rise time
Temperature influence

500 ms (output auf 90%)
+/- $100 \mathrm{ppm} / \mathrm{K}$ of full scale

Limit Switch

Vario - Limit Switch

Technical specifications

Supply

Voltage range AC	$50 \ldots 253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Nominal voltage $A C$	230 V AC
Voltage range DC	$20 \ldots 253 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,4 \mathrm{~W}$

Housing

Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20

Connection method detachable terminal clamp

Terminals, wire cross section $2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals $\quad 0,5 \mathrm{Nm}$
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard ${ }^{\text {1) }}$	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
1)During electromagnetic disturbance minor changes in output signal are possible.	

${ }^{11}$ During electromagnetic disturbance minor changes in output signal are possible.
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input/output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
Signal/auxiliary voltage	$3 \mathrm{kV}(1 \mathrm{~min})$

Display and operating elements

MK350 GVD	On: LED for operating display in green on
On - normal operation Rel. A	
Relashing - Signal failure, signal outside range limits Rel: two LEDs for relays A and B in red on - relay activated	

AD.PC AD-PC: Communication interface for configuration by a PC
Communication interface for VarioControl

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-MK 350 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40607	2	Input signal	mA / V Ohm	7	1	0
40609	2	Scaled input	${ }^{\circ} \mathrm{C} /$?	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16:3	S16:4	U32:5	S32: 6	float: 7

Frequency Converter

Description

The frequency measuring converter AD-FM 255 GVD supplies an initiator or a contact and transforms its impulse sequence to a proportional impressed analogue signal. The output signal is independent from the connected load up to a maximum value. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software AD-Studio. Input, output and the supply voltage are separated from each other galvanically with high isolation.

Application

The main area of application is the through-flow measuring at water meters, further applications are energy consumption measuring etc.

Specific characteristics

- Inputs: NAMUR, contact, open collector, 3-conductor Opto, 24 V activ
- Outputs: current and voltage
- Digital output: Relay or semiconductor (pulse or limit value function)
- Operating module VarioControl as an accessory
- Programming via configuration software

Business data

Order number

AD-FM 255 GVD
AD-FM 255 GVD-O

Accessory (optional)

Operating module
USB programming adapter
relay output
semiconductor output

AD-VarioControl
AD-VarioPass /AD-Studio

Technical specifications	
Digital input	
Input	NAMUR (EN 60947-5-6), reed contact, open-collector, 3-lead optotransmitter or 24 V active
Input frequency	$\min .0 \ldots 10 \mathrm{mHz}$; max. $0 \ldots 10 \mathrm{kHz}$
Frequency generator supply	active: $8 \mathrm{~V} / 8 \mathrm{~mA}$
Kontaktentprellung (activatable)	40 ms
Output current	
Output range	0... 20 mA
Max. burden	400 Ohm
Residual ripple	< 50μ Ass
Output voltage	
Output range	$0 \ldots 10 \mathrm{~V}$
Min. burden	10 kOhm
Residual ripple	$<20 \mu \mathrm{Vss}$
Accuracy	
Unit	<0,3\%
Temperature influence	<100 ppm / K
Response time	approx. 70 ms
Relay output	
Contact type	potential-free changeover
Max. AC-breaking capacity	250 V AC, 2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Semiconductor output (optional)	
Max switching voltage	30 V DC
Max. switching current	50 mA DC
Voltage drop	$<1 \mathrm{~V}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	3,7 VA / 2,1 W
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 140 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Frequency Converter

Technical specifications

EMC

Product family standard ")	EN 61326-1
Emitted interference	EN 55011, C In a critical E shielded enco recommende "During electromagnetic disturbance minor changes in output signal
Electrical safety requirements Product family standard EN 61010-1 Overvoltage category II Pollution degree 2	

Galvanic isolation, test voltages

Input/output	2 kV RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)

Block and wiring diagram

Display and operating elements

On: LED for the power indicator in green
lights up - normal operation
flashing - signal failure, signal outside range limits
In: LED for input pulse signal
$0 \ldots 7 \mathrm{~Hz}$ - according to signal
$>7 \mathrm{~Hz}-7 \mathrm{~Hz}$ flashing Out: LED for the relays / semiconductor lights up - relay energized
AD-PC: Communication interface for configuration by a PC
Communication interface VarioControl

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-FM 255 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40801	2	Input frequency	Hz	float	1	0
40803	2	Scaled input		float	1	0
40805	2	Input percentage	\%	float	1	0
40901	2	Output signal voltage	V	float	1	1
40903	2	Output signal current	mA	float	1	1

Power Measurement

Description

The digital power measuring transducer AD-LU 320 GVD measures all quantities of the power-network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. The unit is therefore optimal suitable for integration in energy management systems. For measuring of high voltages or high currents, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Measurement of a phase
- Measuring quantities: active power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics (active power), energy metering
- current and voltage output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-LU 320 GVD
Accessory (optional)
Operating module
USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring ranges	0 ... 1 A AC; $0 \ldots 5$ A AC
Max. measurable harmonic	40
Input voltage	
Measuring range	$10 . .253 \mathrm{~V}$ AC
Input resistance	> 1 MOhm
Output current	
Output range	0/4 ... 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	20 mVss
Supply	
Voltage range AC	50 ... 253 V AC, 50/60 Hz
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . .253 \mathrm{~V}$ DC
Power consumption AC / DC	3,4 VA / 1,8 W
Power consumption with operating module AC / DC	3,6 VA / 2,0 W
Transmission behaviour	
Basic accuracy	< 0,5 \% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	< 0,5 s (0... 90 \%, 100... 10 \%)

Technical specifications	
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\prime \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
${ }^{1}$) During checking, slight signal deviations are	possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to analog outputs / power- $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
supply
Power-supply to analog out $3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits	
Input	electrical surge protection
Power supply	protection against over-temperature, over-voltage and over-current electrical surge protection
Analog outputs	

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits

Dimensions

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 320 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40569	2	current peak L1	A	7	1	0
40575	2	frequency	Hz	7	1	0
40585	2	phase angle Psi L1	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The digital power measuring transducer AD-LU 325 GVD measures all quantities of the power-network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. The unit is therefore optimal suitable for integration in energy management systems. The current is measured via additionally available split-core current transformers. For measuring of high voltages, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Measurement of a phase

- Current measurement via split-core current transformers up to 600 A
- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics (active power), energy metering
- current and voltage output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data	
Order number	
AD-LU 325 GVD	
Accessory (optional)	
AD-split core current transformer	5/50/100/200/400/600 A AC
Operating module	AD-VarioControl
USB programming adapter	AD-VarioPass
Configuration software	AD-Studio
Technical specifications	
Input current	
Measuring ranges	0 ... $0,05 \mathrm{~A}$ AC from split core current transformer
Max. measurable harmonic	40
Input voltage	
Measuring range	10 ... 253 V AC
Input resistance	> 1 MOhm
Output current	
Output range	0/4 .. 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25 HAss
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	20 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . .253$ V DC
Power consumption AC / DC	3,4 VA / 1,8 W
Power consumption with operating module AC / DC	3,6 VA / 2,0 W
Transmission behaviour	
Basic accuracy	< 0,5 \% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	< 0,5 s (0... $90 \%, 100 \ldots 10 \%)$

Technical specifications
Input current

Max. measurable harmonic
Input voltage
Measuring range

Output current
Output range
Resolution
Residual ripple
Output voltage
Output range
Resolution
Residual ripple
Supply
oltage range AC
/ DC

Power consumption AC / DC
ver consumption with

ransmission behaviour

Temperature influence
Response time

0 ... 0,05 A AC from split core current 40

10 ... 253 V AC
>1 MOhm

0/4 ... 20 mA
Bit
11 Bit

0/2 ... 10 V
10 kOhm
11 Bit
20 mVss

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ 230 V AC / 24 V DC
20 ... 253 V DC
3,4 VA / 1,8 W
3,6 VA / 2,0 W
< 0,5 \% (class 0.5)
$<0,5 \mathrm{~s}(0 \ldots 90 \%, 100 \ldots 10 \%)$

Technical specifications	
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Skinning length	6 mm
Weight	$\sim 145 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\prime \prime}$
Emitted interference ${ }^{1}$ During checking, slight signal deviations are	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to analog outputs / power- $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
supply
Power-supply to analog out $3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits Input	electrical surge protection Power supply
protection against over-temperature, over-voltage and over-current electrical surge protection	

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits

Dimensions

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 325 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40569	2	current peak L1	A	7	1	0
40575	2	frequency	Hz	7	1	0
40585	2	phase angle Psi L1	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The digital power measuring transducer AD-LU 620 GVF measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. With the integral relay and transistor output, the switching of limiting values or the output of energy pulses is possible. The unit is therefore optimal suitable for integration in energy management systems. For measuring of high voltages or high currents, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition and the relay-status. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Connection of 3 phases with neutral, any load
- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics, energy metering
- current and voltage output
- relay or transistor output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 33 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data	
Order number AD-LU 620 GVF	
Accessory (optional) Operating module USB programming adapter Configuration software	AD-VarioControl AD-VarioPass AD-Studio
Technical specifications	
Current-inputs (11...I3) Measuring ranges Max. measurable harmonic	$\begin{aligned} & 0 \ldots 1 \text { A AC; } 0 \ldots 5 \text { A AC } \\ & 40 \end{aligned}$
Voltage-inputs (L1...L3) Measuring range Input resistance	$\begin{aligned} & 10 \ldots 253 \mathrm{~V} \mathrm{AC} \\ & >1 \mathrm{MOhm} \end{aligned}$
Output current Output range Max. load Resolution Residual ripple	$\begin{aligned} & 0 / 4 \ldots 20 \mathrm{~mA} \\ & 400 \text { Ohm } \\ & 11 \text { Bit } \\ & 25 \text { нAss } \end{aligned}$
Output voltage Output range Min. load Resolution Residual ripple	$\begin{aligned} & 0 / 2 \ldots 10 \mathrm{~V} \\ & 10 \mathrm{kOhm} \\ & 11 \text { Bit } \\ & 20 \mathrm{mVss} \end{aligned}$
Semiconductor output Maximum switching load DC Pulse length min ... max	$30 \mathrm{~V}, 50 \mathrm{~mA}$ $50 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Relay output	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC Contact construction	$50 \mathrm{~V}, 2 \mathrm{~A}$ potential-free changeover
Switching operations mechanical	$1 * 10^{7}$
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
At 24V/2A DC	$2 * 10^{5}$
Pulse length min ... max	$500 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . . .253 \mathrm{~V}$ DC
Power consumption AC / DC	4,6 VA / 2,4 W
Power consumption with operating module AC / DC	4,8 VA / 2,6 W
Transmission behaviour	
Basic accuracy	< 0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	<0,5 s

Power Measurement

Technical specifications	
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$33 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$33 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	$\sim 190 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {² }}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
1) During checking, slight signal deviations are	possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to outputs / power-supply $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power-supply to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay contacts to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection
Power supply
Analog outputs

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
A / Opto: LED for semiconductor switch
on - activated
B / rel: LED for relays
on - activated
AD-PC: Communication interface for configuration by a PC

Communication interface for VarioControl

Dimensions

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 620 GVF via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40505	2	active power total L2	kW	7	1	0
40507	2	active power total L3	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40513	2	reactive power L2	kvar	7	1	0
40515	2	reactive power L3	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40521	2	apparent power L2	kVA	7	1	0
40523	2	apparent power L3	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40529	2	power factor in L2		7	1	0
40531	2	power factor in L3		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40537	2	active fundamental power L2	kW	7	1	0
40539	2	active fundamental power L3	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40545	2	active harmonic power L2	kW	7	1	0
40547	2	active harmonic power L3	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40551	2	voltage L2 / N	V	7	1	0
40553	2	voltage L3 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40559	2	current in L2	A	7	1	0
40561	2	current in L3	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40565	2	voltage peak L2	V	7	1	0
40567	2	voltage peak L3	V	7	1	0
40569	2	current peak L1	A	7	1	0
40571	2	current peak L2	A	7	1	0
40573	2	current peak L3	A	7	1	0
40575	2	frequency	Hz	7	1	0
40577	2	phase angle Phi L1	-	7	1	0
40579	2	phase angle Phi L2	${ }^{\circ}$	7	1	0
40581	2	phase angle Phi L3	${ }^{\circ}$	7	1	0
40583	2	temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40585	2	phase angle Psi L1	-	7	1	0
40587	2	phase angle Psi L2	。	7	1	0
40589	2	phase angle Psi L3	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The digital power measuring transducer AD-LU 625 GVF measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. With the integral relay and transistor output, the switching of limiting values or the output of energy pulses is possible. The unit is therefore optimal suitable for integration in energy management systems. The current is measured via additionally available split-core current transformers. For measuring of high voltages, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition and the relay-status. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Connection of 3 phases with neutral, any load
- Current measurement via split-core current transformers up to 600 A
- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics, energy metering
- current and voltage output
- relay or transistor output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 33 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data	
Order number	
Accessory (optional)	
AD-split core current transformer	5/50/100/200/400/600 A AC
Operating module	AD-VarioControl
USB programming adapter	AD-VarioPass
Configuration software	AD-Studio
Technical specifications	
Current-inputs (11...13)	
Measuring ranges	0 ... 0,05 A AC from split core current transformer
Max. measurable harmonic	40
Voltage-inputs (L1...L3)	
Measuring range	10 ... 253 V AC
Input resistance	> 1 MOhm
Output current	
Output range	0/4 ... 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	20 mVss
Semiconductor output	
Maximum switching load DC	$30 \mathrm{~V}, 50 \mathrm{~mA}$
Pulse length min ... max	$50 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Relay output	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	potential-free changeover
Switching operations mechanical	$1{ }^{*} 10^{7}$
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
At $230 \mathrm{~V} / 2 \mathrm{~A} A C, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
At 24V/2A DC	$2 * 10^{5}$
Pulse length min ... max	500 ms ... 10000 ms
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . . .253$ V DC
Power consumption AC / DC	4,6 VA / 2,4 W
Power consumption with operating module AC / DC	4,8 VA / 2,6 W
Transmission behaviour	
Basic accuracy	< 0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	<0,5 s

Technical specifications	
Housing	
Dimensions (WxHxD)	$33 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$33 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	$\sim 180 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {² }}$
Emitted interference ${ }^{1}$ During checking, sight signal deviations are	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to outputs / power-supply $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power-supply to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay contacts to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection
Power supply protection against over-temperature, over-voltage and over-current electrical surge protection

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
A / Opto: LED for semiconductor switch
on - activated
B / rel: LED for relays
on - activated
AD-PC: Communication interface for configuration by a PC

Communication interface for VarioControl

Dimensions

\qquad ${ }^{9}|10|+11 \mid 1$ 000000
\qquad 00000000000

Circuit examples

Multifunction Transducer

Description

The digital multi-function measuring transformers of series VarioCheck AD-VC 1 are freely programmable digital measuring transducers with two analogue outputs and up to 2 limiting value relays. Extensive standard equipment and additional options solve almost all imaginable tasks of a modern evaluation. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. VarioCheck AD-VC 1 fulfils all tasks of a universal and secure measuring value recording through integral function modules such as limiting value messages, freely adjustable hysteresis, selectable relay functions, timedelayed switching, automatic or manual simulation modus, free linearizing curves and a wide range of supply voltage.

Specific characteristics

- bipolar current input
- bipolar mV voltage input
- voltage input
- Power supply for 2-wire transmitters
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C; internal or external reference junction
- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Resistance, Potentiometer input
- Sensor error detection for thermocouples and resistance thermometers
- Input of a characteristic curve possible
- Automatic or manual simulation operation
- 2 bipolar current or voltage output
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-VC1 GVD-R0 AD-VC1 GVD-R2

Accessory (optional)

Operating module
Control panel with RS-485
USB programming adapter
Configuration software

without relay

two relays

AD-VarioControl
AD-VarioConnect
AD-VarioPass
AD-Studio

Technical specifications

Input current
Measuring range
Input resistance
Basic accuracy
Transmitter supply
Off-load voltage
Voltage at 20 mA
Current limit
Input voltage
Measuring ranges
Input resistance
Basic accuracy
Input voltage mV
Measuring ranges

Input resistance
Basic accuracy

Thermocouples

Comparative place:
Internal
External
To DIN EN 60584:
measuring range type J measuring range type T measuring range type K measuring range type E measuring range type N basic accuracy
To DIN EN 60584:
measuring range type S
measuring range type R
measuring range type B
basic accuracy
After standard ASTM E988:
measuring range type C
basic accuracy
$-24 \ldots+24 m A D C$
20 Ohm
$4 \mu \mathrm{~A}$
$24,0 \mathrm{~V}$
$18,0 \mathrm{~V}$
$\sim 25 \mathrm{~mA}$
$0 \ldots+12 \mathrm{~V} D C$
1 MOhm
1 mV
$-15 \ldots+15 \mathrm{mV}$
$-30 \ldots+30 \mathrm{mV}$
$-60 \ldots+60 \mathrm{mV}$
$-125 \ldots+125 \mathrm{mV}$
$-250 \ldots+250 \mathrm{mV}$
1 MOhm
$20 \mu \mathrm{~V}$
measurement with sensor in the device connecting terminals Cold junction temperature selectable by parameters

$$
\begin{aligned}
& -200 \ldots+1200^{\circ} \mathrm{C} \\
& -200 \ldots+400^{\circ} \mathrm{C} \\
& -200 \ldots+1360^{\circ} \mathrm{C} \\
& -200 \ldots+1000^{\circ} \mathrm{C} \\
& -200 \ldots+1300^{\circ} \mathrm{C} \\
& 1 \mathrm{~K} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& -40 \ldots+1760^{\circ} \mathrm{C} \\
& +400 \ldots+1800^{\circ} \mathrm{C} \\
& 2 \mathrm{~K} \\
& 0 \ldots+2320^{\circ} \mathrm{C} \\
& 2 \mathrm{~K}
\end{aligned}
$$

Multifunction Transducer

Technical specifications	
Resistance input	
Resistance thermometer inputs DIN EN 60751: Pt100, Pt500 and	
Pt1000 DIN 43760: Ni100, Ni500 and Ni1000	
measuring range Pt	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
measuring range Ni	$-60 \ldots+230^{\circ} \mathrm{C}$
smallest measuring spans	20 K
short circuit detection	<20 Ohm
basic accuracy	0,2 K
Linear resistance	
measuring range	0 ... 4000 Ohm
basic accuracy	0,1 Ohm
Connection method	2-, 3- oder 4-wire system
Sensor supply	$100 \mu \mathrm{~A}$
Max line resistance ${ }^{1)}$	$50 \mathrm{Ohm} / \mathrm{cable}$
${ }^{1}$ Bei 2-Leiter geht der Leitungswiderstand als	Offset in die Messung ein.
Potentiometer input	
Connection method	3 -wire system
Max. Resistance	50 Ohm ... 100 kOhm
Sensor supply	< $=500 \mu \mathrm{~A}$
Current outputs	
Max. output range	-21,5 ... 21,5 mA DC
Max. burden	400 Ohm
Residual ripple	20 HAss
Voltage outputs	
Max. output range	-10,5 ... 10,5 V DC
Min. burden	10 kOhm
Residual ripple	10 mVss
Relay outputs A/B	
Contact type	potential free changeover
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Transmission behaviour	
Linearity error	<0,2\% of the measuring range
Rise time	500 ms (0... 90%, 100... 10%)
Rise time (temperature input)	< 1s (0... $90 \%, 100 . . .10 \%$)
Temperature influence	+/- $100 \mathrm{ppm} / \mathrm{K}$ of the measuring range

Block and wiring diagram

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Power consumption with operating module AC / DC

Housing

Dimensions (W×HxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature

Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 Cl. B, Gr. 1
${ }^{1)}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Input to output	$2,5 \mathrm{kV}(1 \mathrm{~min})$
In -/output to auxiliary voltage	$4 \mathrm{kV}(1 \mathrm{~min})$

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
Rel. A Rel: two LEDs for relays A and B in red
Rel. B on - relay activated
AD-PC: Communication interface for configuration by a PC Communication interface for VarioControl

Dimensions

Multifunction Transducer

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-VC 1 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40101	2	Input signal	InUnit	7	1	0
40103	2	Cold-junction temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40301	2	Output signal 1	OutUnit	7	1	1
40303	2	Output signal 2	OutUnit	7	1	1
40601	1	Relay state A		3	1	1
40602	1	Relay state B		3	1	1
40801	2	Scaled input	ScUnit	7	1	0

Legend of the datatypes:

U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7

Description

The Monitor module AD-MM 400 FE is a display and control unit for front panel mounting. The device can be used as master or slave. As a master, the device reads the displayed values of devices that are connected via the RS485 interface with the AD-MM 400 FE. The display values are polled at a certain time frame. The display values can be any data such as measured values, output values, digital inputs or outputs or various counters for energy or amounts. In addition to the display function, the AD-MM 400 FE can configure the connected devices via the menu. As a slave, the device can also be used as pure display device, where the display values are then sent from a master to the ADMM 400.

Application

Display measurements in a graphic display. Scroll through multiple views. Configuration of connected devices via their menu.

Specific characteristics

- Connection in the master operation of up to 32 slaves.
- Scroll up to 10 different user-configurable displays.
- Display of up to 4 values per display.
- Freely configurable labeling of the displays and values.
- Convenient configuration of the displays via PC software AD-Studio.
- Connection of several AD-MM 400 FE on a bus in slave mode.

Technical specifications

Supply	
Supply voltage	$20 . .253 \mathrm{~V}$ AC/DC
Max. power consumption	1,0W / 2,0VA
Housing	
Dimensions (WxHxD)	$96 \times 96 \times 63 \mathrm{~mm}$
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Manner of fastening	Panel-mount-case
Weight	205 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Interface 1	
Standard	RS-485
Protocol	Modbus-RTU
Max. attendance	32
Max. length of bus	100 m
Bus termination	120 Ohm (both sites of the bus)
Wiring	bus topology
Interface 2	
Standard	UART, proprietary
Function	configuration
Display	
Type	3,5" TFT
Resolution	320x240 Pixel
Operation	
Type	3 short-stroke keys

Business data

Order number
AD-MM 400 FE

Indicator

Block and wiring diagram

Dimensions

Circuit examples

Description

The AD-MM 500 FE monitor module is a display device, control unit and data logger for front panel installation. The AD-MM 500 FE always works as a Modbus master. It collects the values that are to be displayed or logged cyclically from one or more Modbus slaves. The values can be any data such as measured values, output values, digital inputs or outputs or various counters for energy or quantities. The display is done by freely configurable display elements such as numeric display, bar graphs, time diagrams, drag pointers, LEDs, etc. In addition to the display function, the AD-MM 500 FE can also configure connected devices from ADAMCZEWSKI. To do this, you can navigate in the menu of the connected device and configure the desired parameter. The logged data is saved on an internal micro SD card. They can be picked up at any time with a USB stick.

Application

Display measurements in a graphic display. Scroll through multiple views. Configuration of connected devices via their menu. Log the data for later evaluation.

Specific characteristics

- Connection in the master operation of up to 32 slaves.
- Scroll up to 10 different user-configurable displays.
- Display of up to 4 values per display.
- Freely configurable labeling of the displays and values.
- Convenient configuration of the displays via PC software AD-Studio.
- Connection of several AD-MM 400 on a bus in slave mode.

Business data

Order number
AD-MM 500 FE

Technical specifications

Supply	
Supply voltage	$20 . .253$ V DC
Supply voltage	$50 . .253 \mathrm{~V}$ AC
Max. power consumption	2,0W / 4,0VA
Housing	
Dimensions (WxHxD)	96x96x63 mm
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Manner of fastening	Panel-mount-case
Weight	350 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
Pollution degree	2
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
RS485-interface	
Connection	3 -pin socket 3.81 mm grid
Standard	RS-485
Function	Modbus-Master
Protocol	Modbus-RTU
Max. attendance	32
Max. length of bus	100m - twisted, shielded cable
Bus termination	120 Ohm (both sites of the bus)
Configuration interface	
Connection	3.5 mm jack socket
Standard	UART, proprietary
Function	configuration
Network interface	
Connection	RJ45 socket
Standard	Ethernet
Function	Reserve for future expansions
USB interface	
Connection	Type A socket for USB stick
Standard	USB 1.0, 2.0
Function	Data transfer
Display	
Type	3,5" TFT
Resolution	320×240 Pixel
Operation	
Type	3 short-stroke keys
Data logger	
Internal memory size	2 GB (andere auf Anfrage)
Internal storage medium	$\mu S D$, single level cell
Sampling interval	1s ... ~18h
Max. channels	32
Data format	*.csv

Block and wiring diagram

Dimensions

Description

The VarioShow AD-VS 8 serves the visualisation of up to 8 analogue signals which can be initialized independently. Each display channel has a current input and a voltage input and can be sized completely freely. There are the most diverse types of indication, amongst others a drag pointer function (display of the highest and lowest values) and a linearization over $24 \mathrm{x} / \mathrm{y}$ points, to show volume above the height, for instance. The physical dimension can be selected from a table. The measuring value is illustrated as a number or with a quasi-analogue bar. All parameter can also be operated or saved via a PC (AD-Studio).

Application

Display of up to 8 independent analogue input signals in freely scalable dimension and unit.

Specific characteristics

- Wide range power supply
- scalable analog displays
- graphic display of measured values
- presettable counters
- rolling channel display
- Drag pointer function
- free linearization tables
- definable channel names
- predefined unit list

Business data

Order number

AD-VS 8 A1
AD-VS 8 A4
AD-VS 8 A8

Technical specifications

Current inputs	
Range	0... 20 mA
Input resistance	120 Ohm
Voltage inputs	
Range	$0 \ldots 10 \mathrm{~V}$
Input resistance	100 kOhm
Counter	
Range	0 ... 20 mA ; $0 . .10$.. 24 V
Input resistance	I: 120 Ohm; U: 100 kOhm
Switching thresholds	adjustable
Frequency	$<2 \mathrm{~Hz}$
Display	
Graphic-LCD	122x32 Pixel, background lit
Digital display	5 -digit, can be configured
Accuracy	
Unit	0,3\%
Resolution	10 Bit
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Update rate	1 s
Supply	
Supply voltage	20 ... 253 V DC / $50 \ldots 253$ V AC
Max. power consumption	$2 \mathrm{~W} / 4 \mathrm{VA}$
Interface	
Software	AD-Studio
Connection cable	Klinkenkabel
Converter	AD-Vario-Pass-3
Protocol	AD-UART
Data format	19200, e, 8, 1
Housing	
Dimensions (WxHxD)	$96 \times 48 \times 136 \mathrm{~mm}^{3}$
Type of protection	IP 20
Connection method	Pluggable screw terminal
Terminals, wire cross section	$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule / $1,5 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,6 Nm
Skinning length	6 mm
Weight	$\sim 280 \mathrm{~g}$
Manner of fastening	panel-mounting
Environmental conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)

Technical specifications

EMC
Product family standard Emitted interference

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
In a critical EMC environment, shielded encoder cables are recommended.

Electrical safety requirements

Product family standard Overvoltage category

EN 61010-1
Pollution degree
II

Galvanic isolation, test voltages
Input
no separation
Signal/auxiliary voltage 3 kV RMS 50 Hz (1 min.)

Block and wiring diagram

Dimensions

Description

The AD-MM 500 FE monitor module is a display device, control unit and data logger for front panel installation. The AD-MM 500 FE always works as a Modbus master. It collects the values that are to be displayed or logged cyclically from one or more Modbus slaves. The values can be any data such as measured values, output values, digital inputs or outputs or various counters for energy or quantities. The display is done by freely configurable display elements such as numeric display, bar graphs, time diagrams, drag pointers, LEDs, etc. In addition to the display function, the AD-MM 500 FE can also configure connected devices from ADAMCZEWSKI. To do this, you can navigate in the menu of the connected device and configure the desired parameter. The logged data is saved on an internal micro SD card. They can be picked up at any time with a USB stick.

Application

Display measurements in a graphic display. Scroll through multiple views. Configuration of connected devices via their menu. Log the data for later evaluation.

Specific characteristics

- Connection in the master operation of up to 32 slaves.
- Scroll up to 10 different user-configurable displays.
- Display of up to 4 values per display.
- Freely configurable labeling of the displays and values.
- Convenient configuration of the displays via PC software AD-Studio.
- Connection of several AD-MM 400 on a bus in slave mode.

Business data

Order number
AD-MM 500 FE

Technical specifications

Supply	
Supply voltage	$20 . .253$ V DC
Supply voltage	$50 . .253 \mathrm{~V}$ AC
Max. power consumption	2,0W / 4,0VA
Housing	
Dimensions (WxHxD)	96x96x63 mm
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Manner of fastening	Panel-mount-case
Weight	350 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
Pollution degree	2
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
RS485-interface	
Connection	3 -pin socket 3.81 mm grid
Standard	RS-485
Function	Modbus-Master
Protocol	Modbus-RTU
Max. attendance	32
Max. length of bus	100m - twisted, shielded cable
Bus termination	120 Ohm (both sites of the bus)
Configuration interface	
Connection	3.5 mm jack socket
Standard	UART, proprietary
Function	configuration
Network interface	
Connection	RJ45 socket
Standard	Ethernet
Function	Reserve for future expansions
USB interface	
Connection	Type A socket for USB stick
Standard	USB 1.0, 2.0
Function	Data transfer
Display	
Type	3,5" TFT
Resolution	320×240 Pixel
Operation	
Type	3 short-stroke keys
Data logger	
Internal memory size	2 GB (andere auf Anfrage)
Internal storage medium	$\mu S D$, single level cell
Sampling interval	1s ... ~18h
Max. channels	32
Data format	*.csv

Block and wiring diagram

Dimensions

Description

The AD-VL 500 FE monitor module is a display unit and data logger for front panel installation. It has up to 8 analogue standard signal inputs. The inputs can be configured as current or voltage inputs. Counter values can be derived simultaneously from the analogue signals by means of adjustable switching thresholds. A scaled measured value display with freely definable units is possible. The display is done by freely configurable display elements such as numeric display, bar graph, time diagram, drag pointer, LEDs, etc. The unit is supplied with predefined standard display windows. All signals can be logged cyclically in the unit's own memory. The logged data are stored as daily files on an internal micro SD card. They can be retrieved at any time with a USB stick or downloaded via the network interface. The unit can be configured either via the integrated web server of the network interface or via the configuration software AD-Studio. The configuration software is available free of charge on the ADAMCZEWSKI website. The various interfaces (RS485/LAN) make it easy to integrate the device into your own data networks in order to read out measurement data in real time.

Application

Display of freely definable values on a graphic display. Scrolling through several display types. Visual signal monitoring with web browser. Logging of data for later evaluation.

Specific characteristics

- 40 configurable display elements.
- All properties of the display elements such as colour, size, position, labelling and type are configurable.
- 10 configurable displays with $1 . . .12$ display elements per display.
- Integrated web server.
- Convenient configuration of the displays via PC software AD-Studio.
- Buffered real-time clock.
- Interface protocols: Modbus-RTU, Modbus-TCP

Business data

Order number
AD-VL 500 FE

Technical specifications	
Current inputs	
Range	0 ... 20 mA
Resolution	14 bit
Input resistance	50 Ohm
Voltage inputs	
Range	$0 \ldots 10 \mathrm{~V}$
Resolution	14 bit
Input resistance	100 kOhm
Counter	
Range	0 ... $20 \mathrm{~mA} ; 0$... 10 ... 24 V
Input resistance	$\mathrm{I}: 50 \mathrm{Ohm} ; \mathrm{U}: 100 \mathrm{kOhm}$
Frequency	$<0,5 \mathrm{~Hz}$
Supply	
Supply voltage	$20 . . .253$ V DC
Supply voltage	$50 . . .253$ V AC
Max. power consumption	3,0W / 5,0VA
Housing	
Dimensions (WxHxD)	$96 \times 96 \times 63 \mathrm{~mm}$
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Manner of fastening	Panel-mount-case
Weight	350 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
Pollution degree	2
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
RS485-interface	
Connection	3 -polige Buchse $3,81 \mathrm{~mm}$
Standard	RS-485
Protocol	Modbus-RTU
Function	Konfiguration, Modbus-Slave
Max. length of bus	100m - twisted, shielded cable
Bus termination	120 Ohm (both sites of the bus)
Configuration interface	
Connection	3.5 mm jack socket
Standard	AD-PC (UART), proprietary
Function	configuration
Network interface	
Connection	RJ45 socket
Standard	Ethernet, 10/100 Mbit/s
Protocol	HTTP, Modbus-TCP
Function	Web server, configuration, download
USB interface	
Connection	Type A socket for USB stick
Standard	USB 1.0, 2.0
Function	Data transfer

Technical specifications

Display	
Type	
Resolution	$3,5 \mathrm{TFT}$
Operation Type	320×240 Pixel
Data logger Internal memory size	3 short-stroke keys
Internal storage medium	2 GB
Sampling interval	$\mu \mathrm{SD}$, single level cell
Max. channels	$1 \mathrm{~s} \ldots \sim 18 \mathrm{~h}$
Data format	32
	${ }^{*} . \operatorname{csv}$ (Text)

Block and wiring diagram

Dimensions

Indicator

VarioLog

Description

The VarioLog AD-VL 8 is used for the visualization of up to 8 independently parameterizable analog signals with simultaneous data logger function of all channels. Each channel has a current/voltage input and can be freely scaled. There are different types of display, including a trailing indicator function (display of the highest and lowest value). Several linearization functions and a table with $24 \mathrm{x} / \mathrm{y}$ points enable signal adaptation to non-linear signal sources, e.g. to display volume versus height. A scale display unit can be selected from a list. A measured value is displayed as a number and can also be represented by a quasi-analog bar. All parameters can optionally be programmed and archived via PC (AD Studio). The recorded measured values can be recorded for each channel in freely adjustable storage cycles on an SD memory card. In addition, trigger thresholds are possible for starting the storage function, with one channel triggering any other channel.

Application

Display of up to 8 independent analogue input signals in freely scalable dimension and unit.

Specific characteristics

- Wide range power supply
- scalable analog displays
- graphic display of measured values
- presettable counters
- rolling channel display
- Drag pointer function
- free linearization tables
- definable channel names
- predefined unit list

Business data

Order number
AD-VL 8 A1
AD-VL 8 A4
AD-VL 8 A8

Technical specifications

Current inputs	
Range	0... 20 mA
Input resistance	120 Ohm
Voltage inputs	
Range	0 ... 10 V
Input resistance	100 kOhm
Counter	
Range	0 ... 20 mA ; 0 ... $10 \ldots 24 \mathrm{~V}$
Input resistance	$\mathrm{I}: 120$ Ohm; U: 100 kOhm
Switching thresholds	adjustable
Frequency	$<2 \mathrm{~Hz}$
Display	
Graphic-LCD	122x32 Pixel, background lit
Digital display	5 -digit, can be configured
Accuracy	
Unit	0,3\%
Resolution	10 Bit
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Update rate	1 s
Supply	
Supply voltage	$20 . .253 \mathrm{~V}$ DC / 50 ... 253 V AC
Max. power consumption	$2 \mathrm{~W} / 4 \mathrm{VA}$
Interface	
Software	AD-Studio
Connection cable	Klinkenkabel
Converter	AD-Vario-Pass-3
Protocol	AD-UART
Data format	19200, e, 8, 1
Data logger	
Storage medium	SD- oder MMC-Card <= 2GB
Disk formatting	FAT, FAT12, FAT16
Log files	daily files, text
Housing	
Dimensions (WxHxD)	$96 \times 48 \times 136 \mathrm{~mm}^{3}$
Type of protection	IP 20
Connection method	Pluggable screw terminal
Terminals, wire cross section	$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule / $1,5 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,6 Nm
Skinning length	6 mm
Weight	~ 280 g
Manner of fastening	panel-mounting
Environmental conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)

AD-VL 8 A1
VarioLog

Technical specifications

EMC
Product family standard Emitted interference

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
In a critical EMC environment, shielded encoder cables are recommended.

Electrical safety requirements

Product family standard Overvoltage category

EN 61010-1
Pollution degree
II

Galvanic isolation, test voltages

Input
no separation
Signal/auxiliary voltage

Block and wiring diagram

Dimensions

Power Measurement Transducer

Description

The digital power measuring transducer AD-LU 10 GT measures all quantities of the power-network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power ...) and converts these measuring values onto one freely scalable analogue output (20 mA). In addition, the device also has a transistor output for S0 pulses or for reporting limit values. The unit is therefore optimal suitable for integration in energy management systems. One phase ore balanced 3 - or 4 -wire systems can be measured. The AD-LU 10 GT is supplied via its measuring voltage L1. The current measuring is carried out via the bar-type transformer mounted on the front. For measuring of high voltages or high currents, external transformers can be connected in series at any time. The AD-LU 10 GT can be read out and parameterised via the integral interface with the aid of the available ADStudio. An LED at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in industrial plant, machines or energy management systems for balancing and determination of energy distribution.
Attention: This is a Class A product according to EN 55011. Additional EMC actions may be necessary when used in small businesses or in residential areas.

Specific characteristics

- compact design
- current measurement via clamp on current transfomrers
- supplied via its measuring voltage L1
- current output (mA)
- S0- or Limit-Output
- monitoring all variables of the three-phase network
- parameterization via AD-Studio

Business data

Order number

Power measurement transducer

Accessory (optional)

VarioPass3
AD-Studio

AD-LU 10 GT

USB-Schnittstellenadapter
Konfigurationssoftware

Power Measurement Transducer

Technical specifications

Input current	
Measuring ranges	$\begin{aligned} & 0 \ldots 1 \text { A AC; } 0 \ldots 5 \text { A AC; } \\ & 0 \ldots 20 \text { A AC } \end{aligned}$
Max. conductor diameter	4,8 mm
Max. measurable harmonic	40
Input voltage	
Measuring range	$80 . .253 \mathrm{~V}$ AC
Input resistance	> 900 kOhm
Output current	
Output range	0/4 ... 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25μ Ass
Transistor output	
Max. switching load	30 V DC, 20 mA
Pulse length min ... max	$50 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Supply	
Voltage range AC	80 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
Nominal voltage AC	230 V AC
Power consumption	max. 4 VA

Transfer behavior - in reference to the current value

Basic accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Skinning length
Weight
Manner of fastening
<0,5 \% (class 0.5)
80 ppm/K
<0,5 s
$35,5 \times 90 \times 70 \mathrm{~mm}$
IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
$0,6 \mathrm{Nm}$
6 mm
$\sim 150 \mathrm{~g}$
35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference
Electrical safety requirements
Product family standard EN
Overvoltage category
Pollution degree 2

Safety measurement EN 61010-2-030
Measurement category CAT II

Galvanic isolation, test voltages

Grid side to analoge output $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power Supply to Transistor $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Output
Protection circuits
Input electrical surge protection

Power supply protection against over-temperature,
Analogue output over-voltage and over-current electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Power Measurement

Power Measurement Transducer

Block and wiring diagram

Power Measurement

Description

The digital power and energy meter AD-LU 20 GT measures all standard values of the three-phase system (active-, reactive-, apparent-power, voltage, currents, harmonics, power factor etc.) and provides this via an Ethernet interface. The measured values can be read out via ModbusTCP protocol. In addition, these measured values are displayed on an integrated small WEB server. The device can also be parameterized via this WEB server. The AD-LU 20 GT is also equipped with an RS485 interface. This RS485 interface with Modbus-RTU protocol is mainly suitable for connecting an external display (AD-MM 400), but can also be used to read data or parameterize. The current is fed via the frontmounted through-current converters, which can measure up to 20 A directly. However, additional current transformers for larger currents can also be connected at any time. It is possible to measure symmetrical or unbalanced 4 -wire networks and symmetrically loaded 3 -wire networks. Due to the integrated, efficient wide-range power supply, the device operates in a large supply voltage range and does not heat up very much.

Application

Measurement and monitoring of all electrical characteristics in electrical systems. Detection of load profiles for energy management systems, e.g. ISO 50001. Recording the energy consumption of individual consumers. Monitoring of voltage quality variables, e.g. harmonics.

Specific characteristics

- internal current-transformer
- Ethernet-Interface
- RS485-Interface
- Counters for active, reactive and apparent energy
- Counters for purchased or fed energy

Business data

Order number

AD-LU 20 GT power meter

Accessory

AD-MM 400 compatible display
AD-VarioPass3 USB/RS485-adapter

Power Measurement

Technical specifications		Environmental conditions	
Current-inputs (11...13)		Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Measuring ranges	0 ... 1 A AC; 0 ... 5 A AC;	Storage and transport	$-10 \ldots .70^{\circ} \mathrm{C}$ (no condensation)
	0 ... 20 A AC	EMC	
Max. conductor diameter	$4,8 \mathrm{~mm}$	Product family standard	EN 61326-1 ${ }^{11}$
Voltage-inputs (L1...L3)		Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Measuring range	50 ... 253 V AC	Electrical safety requirements	
Input resistance	ca. 950 kOhm	Product family standard	EN 61010-1
Ethernet-interface		Overvoltage category	1
Software protocol	Modbus-TCP	Pollution degree	2
Standard-IP	192.168.178.99	Safety measurement	EN 61010-2-030
Network mask	255.255.255.0	Measurement category	CAT III
WEB-Server	Port 80	Galvanic isolation, test voltag	
RS485-Bus		Grid side to RS485-Bus	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Software protocol	Modbus-RTU	Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Data format	19200, e, 8, 1	Protection circuits	
Max. bus users	99	Input	electrical surge protection
Bus termination	120 ohms both sides at the end	RS485-Bus	electrical surge protection
Max. length of bus	500 m (no stubs)	Power supply	protection against over-temperature,
Cable	twisted and shielded		over-voltage and over-current
Supply		") During checking, slight signal deviations are possible.	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)		
Nominal voltage AC	230 V AC		
Power consumption	max. 2,5 VA		
Transfer behavior - in reference to the current value			
Basic accuracy	< 0,5\% (class 0.5)		
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$		
Response time	<0,5 s		
Housing			
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$71 \times 90 \times 70 \mathrm{~mm}$		
Type of protection	IP 20		
Connection method	screw clamp		
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire		
Bolting torque terminals	0,6 Nm		
Skinning length	6 mm		
Weight	$\sim 180 \mathrm{~g}$		
Manner of fastening	35 mm DIN rail 35 mm		

Power Measurement

Block and wiring diagram

Dimensions

Hinweis:
Für die Messung symmetrischer Lasten kann das Gerät so umparametriert werden, dass nur ein Stromwandler für die Messung notwendig ist. In diesem Fall bitte die Strommessung mit Stromwandler 1 auf Phase L1 durchführen.

Power Measurement

Modbus－Data						
start address	no．of registers	name	unit	data type	read	write
Messwerte：						
40501	2	SCA＿TOTAL ACTIVE＿POWER	kW	7	1	0
40503	2	SCA＿PHASE＿A＿ACTIVE＿POWER	kW	7	1	0
40505	2	SCA＿PHASE＿B＿ACTIVE＿POWER	kW	7	1	0
40507	2	SCA＿PHASE＿C＿ACTIVE＿POWER	kW	7	1	0
40509	2	SCA TOTAL REACTIVE POWER	kvar	7	1	0
40511	2	SCA＿PHASE＿A＿REACTIVE＿POWER	kvar	7	1	0
40513	2	SCA＿PHASE＿B＿REACTIVE＿POWER	kvar	7	1	0
40515	2	SCA＿PHASE＿C＿REACTIVE＿POWER	kvar	7	1	0
40517	2	SCA＿TOTAL＿APPARENT＿POWER	kVA	7	1	0
40519	2	SCA＿PHASE＿A APPARENT＿POWER	kVA	7	1	0
40521	2	SCA PHASE B APPARENT POWER	kVA	7	1	0
40523	2	SCA PHASE＿C＿APPARENT＿POWER	kVA	7	1	0
40525	2	SCA＿TOTAL＿POWER＿FACTOR		7	1	0
40527	2	SCA＿PHASE＿A＿POWER＿FACTOR		7	1	0
40529	2	SCA＿PHASE＿B＿POWER＿FACTOR		7	1	0
40531	2	SCA＿PHASE＿C＿POWER＿FACTOR		7	1	0
40533	2	SCA＿TOTAL＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40535	2	SCA＿PHASE＿A＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40537	2	SCA＿PHASE＿B＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40539	2	SCA＿PHASE＿C＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40541	2	SCA＿TOTAL＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40543	2	SCA＿PHASE＿A ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40545	2	SCA PHASE B ACTIVE HARMONIC POWER	kW	7	1	0
40547	2	SCA PHASE＿C＿ACTIVE HARMONIC＿POWER	kW	7	1	0
40549	2	SCA＿PHASE＿A＿VOLTAGE＿RMS	V	7	1	0
40551	2	SCA＿PHASE＿B＿VOLTAGE＿RMS	V	7	1	0
40553	2	SCA＿PHASE＿C＿VOLTAGE＿RMS	V	7	1	0
40555	2	SCA＿N＿LINE＿CALCULATED＿CURRENT＿RMS	A	7	1	0
40557	2	SCA＿PHASE＿A＿CURRENT＿RMS	A	7	1	0
40559	2	SCA＿PHASE＿B＿CURRENT＿RMS	A	7	1	0
40561	2	SCA＿PHASE＿C＿CURRENT＿RMS	A	7	1	0
40563	2	SCA＿CHANNEL＿A＿VOLTAGE＿PEAK	V	7	1	0
40565	2	SCA＿CHANNEL＿B＿VOLTAGE＿PEAK	V	7	1	0
40567	2	SCA＿CHANNEL＿C＿VOLTAGE＿PEAK	V	7	1	0
40569	2	SCA＿CHANNEL＿A＿CURRENT＿PEAK	A	7	1	0
40571	2	SCA＿CHANNEL＿B＿CURRENT＿PEAK	A	7	1	0
40573	2	SCA＿CHANNEL＿C＿CURRENT＿PEAK	A	7	1	0
40575	2	SCA＿FREQUENCY	Hz	7	1	0
40577	2	SCA＿PHASE＿A＿MEAN＿PHASE＿ANGLE	－	7	1	0
40579	2	SCA＿PHASE＿B＿MEAN＿PHASE＿ANGLE	。	7	1	0
40581	2	SCA＿PHASE＿C＿MEAN＿PHASE＿ANGLE	－	7	1	0
40583	2	SCA MEASURED＿TEMPERATURE	${ }^{\circ} \mathrm{C}$	7	1	0
40585	2	SCA＿PHASE＿A＿VOLTAGE＿PHASE＿ANGLE	－	7	1	0
40587	2	SCA＿PHASE＿B＿VOLTAGE＿PHASE＿ANGLE	。	7	1	0
40589	2	SCA＿PHASE＿C＿VOLTAGE＿PHASE＿ANGLE	。	7	1	0
40591	2	SCA＿IN＿PHASE＿AB＿VOLTAGE＿RMS	V	7	1	0
40593	2	SCA＿IN＿PHASE＿BC＿VOLTAGE＿RMS	V	7	1	0
40595	2	SCA IN PHASE＿CA VOLTAGE RMS	V	7	1	0

Power Measurement

Modbus-Data						
start address	Ino. of registers	name]unit	data type	\|read	Write
List-Parameters:						
41001	1	LIST_LOAD_TYPE		3	1	1
41002	1	LIST RS485 BAUDRATE		3	1	1
41003	1	LIST-RS485-PARITY		3	1	1
41004	1	LIST RS485 STOPBIT		3	1	1
Data-Parameters:						
42001	12	DATAPAR_FILTER	s	7	1	1
42003	2	DATAPAR PRIIM_CURRENT	A	7	1	1
42005	2	DATAPAR_SEK_CURRENT	A	7	1	1
42007	2	DATAPAR PRIM VOLTAGE	V	7	1	1
42009	2	DATAPAR_SEK VOLTAGE	v	7	1	1
42019	2	DATAPAR_LOAD_HOURS_LIMIT	\%	7	1	1
Counters (full units):						
43503	2	ENERGY_KWH_TOTAL_CONSUMPTION	kWh	5	1	1
43505	2	ENERGY KWH_TOTAL_INFEED	kWh	5	1	1
43507	2	ENERGY_KVARH_TOTAL INDUCTIVE	kVarh	5	1	1
43509	2	ENERGY KVARH_TOTAL_CAPACITIVE	kVarh	5	1	1
43511	2	ENERGY_KVAH_TOTAL	kVAh	5	1	1
43513	2	LOAD_HOURS	kVAh	5	1	1
Counters (tenth units):						
44103	2	ENERGY KWH_TOTAL_CONSUMPTION	kWh	5	1	1
44105	2	ENERGY KWH TOTAL INFEED	kWh	5	1	1
44107	2	ENERGY_KVARH_TOTAL_INDUCTIVE	kVarh	5	1	1
44109		ENERGY KVARH_TOTAL_CAPACITIVE	kVarh	5	1	1
44111		ENERGY KVAH TOTAL	kVAh	5	1	1
44113	2	LOAD_HOURS	h	5	1	1

Legend of the data types:

U08: 1	S08: 2	U16:3

S16:4

U32: 5
|S32: 6 float: 7
Coding of the list-parameter (list index:value):

Baudrate	0:2400	1:4800	2:9600	3:14k4	4:19k2	5:28k8	6:38k4	7:57k6	8:76k8	9:115k2
Stopbit	0:1	1:2								
Parität	0:even	1:odd	2:none							
Lastart	0:beliebig	1:gleich								

Password assignment for WEB interface

The first time you access the configuration data via the WEB interface of the device, a password request appears. At this point, the password for accessing the configuration can be set via the WEB interface. If the password input field remains "empty" the first time it is accessed, the device has no password protection and can always be accessed with an empty password. If a password is entered, this password applies to access. To change the password, the password must be reset via the WEB interface under "Factory settings".

Factory RESET without network access

If the assigned password is no longer known and access is no longer possible, the device can be reset using the following procedure.

1. Device off, LAN cable must be plugged in.
2. Switch on the power supply.
3. Wait for the LAN link LED, then immediately disconnect the LAN cable (operating LED flashes).
4. Wait 2 seconds.
5. Plug in the LAN cable again.

IP settings and password are reset (IP standard setting: IP = 192.168.178.99/255.255.255.0 / DHCP = ON):

Power Measurement

Description

The digital power and energy meter AD-LU 25 GT measures all standard values of the three-phase system (active-, reactive-, apparent-power, voltage, currents, harmonics, power factor etc.) and provides this via an Ethernet interface. The measured values can be read out via ModbusTCP protocol. In addition, these measured values are displayed on an integrated small WEB server. The device can also be parameterized via this WEB server. The AD-LU 25 GT is also equipped with an RS485 interface. This RS485 interface with Modbus-RTU protocol is mainly suitable for connecting an external display (AD-MM 400), but can also be used to read data or parameterize. The current measurement is realized by external current transformers which are available up to 600 A . Thus, also the retrofitting of existing plants is not a problem. It is possible to measure symmetrical or unbalanced 4 -wire networks and symmetrically loaded 3 -wire networks. Due to the integrated, efficient wide-range power supply, the device operates in a large supply voltage range and does not heat up very much.

Application

Measurement and monitoring of all electrical characteristics in electrical systems. Detection of load profiles for energy management systems, e.g. ISO 50001. Recording the energy consumption of individual consumers. Monitoring of voltage quality variables, e.g. harmonics.

Specific characteristics

- Supports external split-core-transformer
- Ethernet-Interface
- RS485-Interface
- Counters for active, reactive and apparent energy
- Counters for purchased or fed energy

Business data

Order number

AD-LU 25 GT

Accessory

AD-KSW 50
AD-KSW 100
AD-KSW 200
AD-KSW 400
AD-KSW 600
AD-MM 400
AD-VarioPass3

power meter

50 A split-core-transformer
100 A split-core-transformer 200 A split-core-transformer 400 A split-core-transformer 600 A split-core-transformer compatible display USB/RS485-adapter

Power Measurement

Technical specifications		Environmental conditions	
Current-inputs (11...13)		Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Measuring ranges	0 ... 33,3 mA AC (via split-core-	Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
	transformer)	EMC	
Input resistance	ca. 10 Ohm	Product family standard	EN 61326-1 ${ }^{17}$
Voltage-inputs (L1...L3)		Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Measuring range	80 ... 253 V AC	Electrical safety requirements	
Input resistance	ca. 950 kOhm	Product family standard	EN 61010-1
Ethernet-interface		Overvoltage category	11
Software protocol	Modbus-TCP	Pollution degree	2
Standard-IP	192.168.178.99	Safety measurement	EN 61010-2-030
Network mask	255.255.255.0	Measurement category	CAT III
WEB-Server	Port 80	Galvanic isolation, test voltages	
RS485-Bus		Grid side to RS485-Bus	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Software protocol	Modbus-RTU	Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Data format	19200, e, 8, 1	Protection circuits	
Max. bus users	99	Input	electrical surge protection
Bus termination	120 ohms both sides at the end	RS485-Bus	electrical surge protection
Max. length of bus	500 m (no stubs)	Power supply	protection against over-temperature,
Cable	twisted and shielded		over-voltage and over-current
Supply		${ }^{11}$ During checking, slight signal deviations are possible.	
Voltage range AC	80 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (see voltage-inputs)		
Nominal voltage AC	230 V AC		
Power consumption	max. 2,5 VA		
Transfer behavior - in reference to the current value			
Basic accuracy	< 0,5\% (class 0.5)		
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$		
Response time	$<0,5$ s		
Housing			
Dimensions (WxHxD)	$71 \times 90 \times 70 \mathrm{~mm}$		
Type of protection	IP 20		
Connection method	screw clamp		
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire		
Bolting torque terminals	0,6 Nm		
Skinning length	6 mm		
Weight	$\sim 180 \mathrm{~g}$		
Manner of fastening	35 mm DIN rail 35 mm		

Power Measurement

Block and wiring diagram

Dimensions

Hinweis:
Für die Messung symmetrischer Lasten kann das Gerät so umparametriert werden dass nur ein Stromwandler für die Messung notwendig ist. In diesem Fall bitte die Strommessung mit Stromwandler 1 auf Phase L1 durchführen.

Power Measurement

Modbus－Data						
start address	no．of registers	name	unit	data type	read	write
Messwerte：						
40501	2	SCA＿TOTAL＿ACTIVE＿POWER	kW	7	1	0
40503	2	SCA＿PHASE＿A＿ACTIVE＿POWER	kW	7	1	0
40505	2	SCA＿PHASE＿B＿ACTIVE＿POWER	kW	7	1	0
40507	2	SCA PHASE＿C＿ACTIVE＿POWER	kW	7	1	0
40509	2	SCA TOTAL REACTIVE＿POWER	kvar	7	1	0
40511	2	SCA＿PHASE＿A＿REACTIVE＿POWER	kvar	7	1	0
40513	2	SCA＿PHASE＿B＿REACTIVE＿POWER	kvar	7	1	0
40515	2	SCA＿PHASE＿C＿REACTIVE＿POWER	kvar	7	1	0
40517	2	SCA TOTAL＿APPARENT＿POWER	kVA	7	1	0
40519	2	SCA＿PHASE＿A＿APPARENT＿POWER	kVA	7	1	0
40521	2	SCA PHASE＿B＿APPARENT＿POWER	kVA	7	1	0
40523	2	SCA＿PHASE＿C＿APPARENT＿POWER	kVA	7	1	0
40525	2	SCA＿TOTAL＿POWER＿FACTOR		7	1	0
40527	2	SCA＿PHASE＿A＿POWER＿FACTOR		7	1	0
40529	2	SCA＿PHASE＿B＿POWER＿FACTOR		7	1	0
40531	2	SCA PHASE＿C＿POWER FACTOR		7	1	0
40533	2	SCA＿TOTAL＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40535	2	SCA＿PHASE＿A＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40537	2	SCA＿PHASE＿B＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40539	2	SCA＿PHASE＿C＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40541	2	SCA＿TOTAL＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40543	2	SCA PHASE A ACTIVE HARMONIC POWER	kW	7	1	0
40545	2	SCA PHASE＿B＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40547	2	SCA＿PHASE＿C＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40549	2	SCA＿PHASE＿A＿VOLTAGE＿RMS	V	7	1	0
40551	2	SCA＿PHASE＿B＿VOLTAGE＿RMS	V	7	1	0
40553	2	SCA＿PHASE＿C＿VOLTAGE＿RMS	V	7	1	0
40555	2	SCA＿N＿LINE＿CALCULATED＿CURRENT＿RMS	A	7	1	0
40557	2	SCA＿PHASE＿A＿CURRENT＿RMS	A	7	1	0
40559	2	SCA＿PHASE＿B＿CURRENT＿RMS	A	7	1	0
40561	2	SCA＿PHASE＿C＿CURRENT＿RMS	A	7	1	0
40563	2	SCA＿CHANNEL＿A＿VOLTAGE＿PEAK	V	7	1	0
40565	2	SCA＿CHANNEL＿B＿VOLTAGE＿PEAK	V	7	1	0
40567	2	SCA CHANNEL＿C＿VOLTAGE PEAK	V	7	1	0
40569	2	SCA＿CHANNEL＿A＿CURRENT＿PEAK	A	7	1	0
40571	2	SCA＿CHANNEL＿B＿CURRENT＿PEAK	A	7	1	0
40573	2	SCA＿CHANNEL＿C＿CURRENT＿PEAK	A	7	1	0
40575	2	SCA＿FREQUENCY	Hz	7	1	0
40577	2	SCA＿PHASE＿A＿MEAN＿PHASE＿ANGLE	。	7	1	0
40579	2	SCA＿PHASE＿B＿MEAN＿PHASE＿ANGLE	－	7	1	0
40581	2	SCA＿PHASE＿C＿MEAN＿PHASE＿ANGLE	。	7	1	0
40583	2	SCA＿MEASURED＿TEMPERATURE	${ }^{\circ} \mathrm{C}$	7	1	0
40585	2	SCA＿PHASE＿A＿VOLTAGE＿PHASE＿ANGLE	${ }^{\circ}$	7	1	0
40587	2	SCA＿PHASE＿B＿VOLTAGE＿PHASE＿ANGLE	。	7	1	0
40589	2	SCA＿PHASE＿C＿VOLTAGE＿PHASE＿ANGLE	－	7	1	0
40591	2	SCA＿IN＿PHASE＿AB＿VOLTAGE＿RMS	V	7	1	0
40593	2	SCA＿IN＿PHASE＿BC＿VOLTAGE＿RMS	V	7	1	0
40595	2	SCA IN PHASE＿CA VOLTAGE＿RMS	V	7	1	0

Power Measurement

Modbus-Data						
start address	Ino. of registers	name]unit	data type	\|read	Write
List-Parameters:						
41001	1	LIST_LOAD_TYPE		3	1	1
41002	1	LIST RS485 BAUDRATE		3	1	1
41003	1	LIST-RS485-PARITY		3	1	1
41004	1	LIST RS485 STOPBIT		3	1	1
Data-Parameters:						
42001	12	DATAPAR_FILTER	s	7	1	1
42003	2	DATAPAR PRIIM_CURRENT	A	7	1	1
42005	2	DATAPAR_SEK_CURRENT	A	7	1	1
42007	2	DATAPAR PRIM VOLTAGE	V	7	1	1
42009	2	DATAPAR_SEK VOLTAGE	v	7	1	1
42019	2	DATAPAR_LOAD_HOURS_LIMIT	\%	7	1	1
Counters (full units):						
43503	2	ENERGY_KWH_TOTAL_CONSUMPTION	kWh	5	1	1
43505	2	ENERGY KWH_TOTAL_INFEED	kWh	5	1	1
43507	2	ENERGY_KVARH_TOTAL INDUCTIVE	kVarh	5	1	1
43509	2	ENERGY KVARH_TOTAL_CAPACITIVE	kVarh	5	1	1
43511	2	ENERGY_KVAH_TOTAL	kVAh	5	1	1
43513	2	LOAD_HOURS	h	5	1	1
Counters (tenth units):						
44103	2	ENERGY KWH_TOTAL_CONSUMPTION	kWh	5	1	1
44105	2	ENERGY KWH TOTAL INFEED	kWh	5	1	1
44107	2	ENERGY_KVARH_TOTAL_INDUCTIVE	kVarh	5	1	1
44109		ENERGY KVARH_TOTAL_CAPACITIVE	kVarh	5	1	1
44111		ENERGY KVAH TOTAL	kVAh	5	1	1
44113	2	LOAD_HOURS	kVAh	5	1	1

Legend of the data types:

U08: 1	S08: 2	U16:3

|S16: 4

U32: 5
|S32: 6 float: 7
Coding of the list-parameter (list index:value):

Baudrate	0:2400	1:4800	2:9600	3:14k4	4:19k2	5:28k8	6:38k4	7:57k6	8:76k8	9:115k2
Stopbit	0:1	1:2								
Parität	0:even	1:odd	2:none							
Lastart	0:beliebig	1:gleich								

Password assignment for WEB interface

The first time you access the configuration data via the WEB interface of the device, a password request appears. At this point, the password for accessing the configuration can be set via the WEB interface. If the password input field remains "empty" the first time it is accessed, the device has no password protection and can always be accessed with an empty password. If a password is entered, this password applies to access. To change the password, the password must be reset via the WEB interface under "Factory settings".

Factory RESET without network access

If the assigned password is no longer known and access is no longer possible, the device can be reset using the following procedure.

1. Device off, LAN cable must be plugged in.
2. Switch on the power supply.
3. Wait for the LAN link LED, then immediately disconnect the LAN cable (operating LED flashes).
4. Wait 2 seconds.
5. Plug in the LAN cable again.

IP settings and password are reset (IP standard setting: IP = 192.168.178.99/255.255.255.0 / DHCP = ON):

Power Measurement

Description

The digital power measuring converter AD-LU 30 GT measures all magnitudes of the three-phase network (current, voltage, energy, effective power, reactive power and apparent power..) and makes this data available via a RS485 bus. The unit is therefore optimally suitable for integration in energy management systems. 3- or 4-conductor networks can be measured. 4 -wire networks can be loaded balanced or unbalanced, whereby 3 -wire networks can only be measured balanced. The AD-LU 30 GT supplies itself via its measuring voltage L1. The current measuring is carried out with the bushing transformer mounted at the front. For measuring high voltages or currents, external converters can be fitted in series at any time. A Modbus-RTU protocol is run via the RS485 bus interface, whereby the AD-LU 30 GT represents a Modbus slave. The bus address is set via the rotary coding switch mounted at the front, this way several of these measuring units can be switched at one bus and can be interrogated from one central point. The AD-LU 30 GT can also be read and parameterized via the available AD-Studio. Two LEDs at the front signal the operating condition and the RS485 data traffic. The compact type of construction and the high performance ability, with simultaneous low energy consumption, allows usage in almost any application.

Application

A typical usage is in energy management systems for balancing and determining the energy distribution.

Specific characteristics

- current measurement through current transformer
- power supply by measuring voltages
- address setting via rotary coding switch
- recording of all sizes of the three-phase system
- parameter setting via AD-Studio

Business data

Order number

AD-LU 30 GT
digital power meter

Accessory

AD-MM 400
TFT-Display

Technical specifications	
Current-inputs (11...13)	
Measuring ranges	$\begin{aligned} & 0 \text {... } 1 \text { A AC; } 0 \text {... } 5 \text { A AC; } \\ & 0 \text {... } 20 \text { A AC } \end{aligned}$
Max. conductor diameter	$4,8 \mathrm{~mm}$
Voltage-inputs (L1...L3)	
Measuring range	80 ... 253 V AC
Input resistance	ca. 500 kOhm
RS485-Bus	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Max. bus users	99
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
Supply	
Voltage range AC	80 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
Nominal voltage AC	230 V AC
Power consumption	max. 3 VA
Transfer behavior - in reference to the current value	
Basic accuracy	<0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	<2 s
Housing	
Dimensions (WxHxD)	$71 \times 90 \times 70 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,6 Nm
Skinning length	6 mm
Weight	$\sim 170 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 5{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Grid side to RS485-Bus	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
RS485-Bus	electrical surge protection
Power supply	protection against over-temperature, over-voltage and over-current

Technical specifications

Current-inputs (11...I3)

Measuring ranges

Voltage-inputs (L1...L3)
Measuring range
Input resistance
RS485-Bus
Software protocol Modbus-RTU
Data format
Max. bus users

Max. length of bus
Cable

80 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
230 V AC
max. 3 VA
Transfer behavior - in reference to the current value

Environmental conditions
Ambient temperature
Storage and transport
Product family standard
Emitted interference

Power Measurement

Block and wiring diagram

Dimensions

Hinweis:
Für die Messung symmetrischer Lasten kann das Gerät so umparametriert werden, dass nur ein Stromwandler für die Messung notwendig ist In diesem Fall bitte die Strommessung mit Stromwandler 1 auf Phase L1 durchführen.

Power Measurement

Modbus Communication

The AD-LU 30 GT has a RS485 bus interface on which the Modbus RTU protocol is used. About this bus interface all measured data of the unit can be read out.
The default standard data format is $19200, e, 8,1$. Adaptation to a different data format is always possible.
data rate: 19200 baud (bits/s) parity: even
data bit: 8
stop bit: 1

The bus address is set at the front mounted rotary switches. The address 0 is prohibited for bus. However, on this zero position the device always using the standard data format (19200, e, 8,1). The position 0 therefore represents a service position, can be used for example at incorrect parameterization.

The AD-LU 30 GT supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Multiple Registers" (0×10) . The function "Read Holding Registers" data can be read from the device and data is written with "Write Multiple Registers". The individual register width is 16 bits.
Please refer to the Modbus specification for a detailed description of the Modbus communication. This is freely available online, but can also be obtained from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

start address	no. of registers	name	unit	data type	read	write
measurement reading:						
40801	2	active power L1	kW	7	1	0
40803	2	active power L2	kW	7	1	0
40805	2	active power L3	kW	7	1	0
40807	2	reactive power L1	kVar	7	1	0
40809	2	reactive power L2	kVar	7	1	0
40811	2	reactive power L3	kVar	7	1	0
40813	2	apparent power L1	kVA	7	1	0
40815	2	apparent power L2	kVA	7	1	0
40817	2	apparent power L3	kVA	7	1	0
40819	2	current L1	A	7	1	0
40821	2	current L2	A	7	1	0
40823	2	current L3	A	7	1	0
40825	2	voltage L1	V	7	1	0
40827	2	voltage L2	V	7	1	0
40829	2	voltage L3	V	7	1	0
40831	2	frequency	Hz	7	1	0
40833	2	total active power	kW	7	1	0
40835	2	total reactive power	kVar	7	1	0
40837	2	total apparent power	kVA	7	1	0
40839	2	power factor L1		7	1	0
40841	2	power factor L2		7	1	0
40843	2	power factor L3		7	1	0
40845	2	total power factor		7	1	0
List-parameters:						
42001	1	BAUDRATE	baud	3	1	1
42002	1	STOPBIT		3	1	1
42003	1	PARITY		3	1	1
42004	1	LOAD TYPE		3	1	1
Data-parameters:						
43001	2	FILTER	s	7	1	1
43003	2	PRIM_current	A	7	1	1
43005	2	SEC_current	A	7	1	1
43007	2	PRIM_voltage	V	7	1	1
43009	2	SEC_voltage	V	7	1	1
43011	2	MIN Ioad	\%	7	1	1
Counters:						
43505	2	total energy KWH EXTRAKT	kWh	5	1	1
43507	2	total energy KWH INFEED	kWh	5	1	1
43509	2	total energy KVARH INDUCTIVE	kVarh	5	1	1
43511	2	total energy KVARH CAPACITIVE	kVarh	5	1	1
43513	2	total energy KVAH	kVAh	5	1	1
44001	2	counter operation hours	h	5	1	1
44013	2	counter load hours	h	5	1	1

Legend of the data types:

U08: 1	S08: 2	U16: 3	S16:4	U32: 5	S32: 6	float: 7

Coding of the list-parameter (list index:value):

Baudrate	$0: 2400$	$1: 4800$	$2: 9600$	$3: 14 \mathrm{k} 4$	$4: 19 \mathrm{k} 2$	$5: 28 \mathrm{k} 8$	$6: 38 \mathrm{k} 4$	$7: 57 \mathrm{k} 6$	$8: 76 \mathrm{k} 8$	$9: 115 \mathrm{k} 2$
Stopbit	$0: 1$	$1: 2$								
Parität	$0:$ even	$1: 0 \mathrm{dd}$	$2:$ none							
load type	$0:$ unbal.	$1:$ bal.								

Power Measurement

Description

The digital power measuring converter AD-LU 35 GT measures all magnitudes of the three-phase network (current, voltage, energy, effective power, reactive power and apparent power..) and makes this data available via a RS485 bus. The unit is therefore optimally suitable for integration in energy management systems. 3- or 4-conductor networks can be measured. 4 -wire networks can be loaded balanced or unbalanced, whereby 3 -wire networks can only be measured balanced. The AD-LU 35 GT supplies itself via its measuring voltage L1. The current measurement takes place via additional external Split-CoreTransformer. The device is therefore ideal for retrofitting if no space is available. For measuring high voltages or currents, external converters can be fitted in series at any time. A Modbus-RTU protocol is run via the RS485 bus interface, whereby the AD-LU 35 GT represents a Modbus slave. The bus address is set via the rotary coding switch mounted at the front, this way several of these measuring units can be switched at one bus and can be interrogated from one central point. The AD-LU 35 GT can also be read and parameterized via the available AD-Studio. Two LEDs at the front signal the operating condition and the RS485 data traffic. The compact type of construction and the high performance ability, with simultaneous low energy consumption, allows usage in almost any application.

Application

A typical usage is in energy management systems for balancing and determining the energy distribution. Due to the measurement via an external current transformer, the unit can be retrofitted without problems in any system without interruption.

Specific characteristics

- compact size
- current measurement through external split current transformer
- power supply by measuring voltages
- address setting via rotary coding switch
- recording of all sizes of the three-phase system
- parameter setting via AD-Studio

Business data

Order number

AD-LU 35 GT digital power meter

Accessory

AD-MM 400
50A-Split-Core-Transformer
100A-Split-Core-Transformer
200A-Split-Core-Transformer
400A-Split-Core-Transformer
600A-Split-Core-Transformer
VarioPass
AD-NetGw 100 GT

TFT-Display
50 A AC primary / 33,3 mA AC secundary
100 A AC primary / 33,3 mA AC secundary
200 A AC primary / 33,3 mA AC secundary
400 A AC primary / 33,3 mA AC secundary
600 A AC primary / 33,3 mA AC secundary
RS485 to USB converter
RS485 to Ethernet converter (Modbus-TCP)

Power Measurement

Technical specifications	
Current-inputs (11...13)	
Measuring ranges	0 ... $33,3 \mathrm{~mA} \mathrm{AC}$ (over split-coretransformer)
Input resistance	ca. 10 Ohm
Voltage-inputs (L1...L3)	
Measuring range	$80 . .253$ V AC
Input resistance	ca. 500 kOhm
RS485-Bus	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Max. bus users	99
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
Supply	
Voltage range AC	80 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
Nominal voltage AC	230 V AC
Power consumption	max. 3 VA
Transfer behavior - in reference to the current value	
Basic accuracy	<0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	$<2 \mathrm{~s}$
Housing	
Dimensions (WxHxD)	$71 \times 90 \times 70 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,6 Nm
Skinning length	6 mm
Weight	$\sim 170 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {² }}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Grid side to RS485-Bus	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
RS485-Bus	electrical surge protection
Power supply	protection against over-temperature, over-voltage and over-current

Power Measurement

Block and wiring diagram

Dimensions

Hinweis
Für die Messung symmetrischer Lasten kann das Gerät so umparametriert werden dass nur ein Stromwandler für die Messung notwendig ist. In diesem Fall bitte die Strommessung mit Stromwandler 1 auf Phase L1 durchführen.

Power Measurement

Modbus Communication

The AD-LU 35 GT has a RS485 bus interface on which the Modbus RTU protocol is used. About this bus interface all measured data of the unit can be read out.
The default standard data format is $19200, e, 8,1$. Adaptation to a different data format is always possible.
data rate: 19200 baud (bits/s) parity: even
data bit: 8
stop bit: 1

The bus address is set at the front mounted rotary switches. The address 0 is prohibited for bus. However, on this zero position the device always using the standard data format (19200, e, 8,1). The position 0 therefore represents a service position, can be used for example at incorrect parameterization.

The AD-LU 35 GT supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Multiple Registers" (0×10) . The function "Read Holding Registers" data can be read from the device and data is written with "Write Multiple Registers". The individual register width is 16 bits.
Please refer to the Modbus specification for a detailed description of the Modbus communication. This is freely available online, but can also be obtained from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

start address	no. of registers	name	unit	data type	read	write
measurement reading:						
40801	2	active power L1	kW	7	1	0
40803	2	active power L2	kW	7	1	0
40805	2	active power L3	kW	7	1	0
40807	2	reactive power L1	kVar	7	1	0
40809	2	reactive power L2	kVar	7	1	0
40811	2	reactive power L3	kVar	7	1	0
40813	2	apparent power L1	kVA	7	1	0
40815	2	apparent power L2	kVA	7	1	0
40817	2	apparent power L3	kVA	7	1	0
40819	2	current L1	A	7	1	0
40821	2	current L2	A	7	1	0
40823	2	current L3	A	7	1	0
40825	2	voltage L1	V	7	1	0
40827	2	voltage L2	V	7	1	0
40829	2	voltage L3	V	7	1	0
40831	2	frequency	Hz	7	1	0
40833	2	total active power	kW	7	1	0
40835	2	total reactive power	kVar	7	1	0
40837	2	total apparent power	kVA	7	1	0
40839	2	power factor L1		7	1	0
40841	2	power factor L2		7	1	0
40843	2	power factor L3		7	1	0
40845	2	total power factor		7	1	0
List-parameters:						
42001	1	BAUDRATE	baud	3	1	1
42002	1	STOPBIT		3	1	1
42003	1	PARITY		3	1	1
42004	1	LOAD TYPE		3	1	1
Data-parameters:						
43001	2	FILTER	s	7	1	1
43003	2	PRIM_current	A	7	1	1
43005	2	SEC_current	A	7	1	1
43007	2	PRIM_voltage	V	7	1	1
43009	2	SEC_voltage	V	7	1	1
43011	2	MIN Ioad	\%	7	1	1
Counters:						
43505	2	total energy KWH EXTRAKT	kWh	5	1	1
43507	2	total energy KWH INFEED	kWh	5	1	1
43509	2	total energy KVARH INDUCTIVE	kVarh	5	1	1
43511	2	total energy KVARH CAPACITIVE	kVarh	5	1	1
43513	2	total energy KVAH	kVAh	5	1	1
44001	2	counter operation hours	h	5	1	1
44013	2	counter load hours	h	5	1	1

Legend of the data types:

U08: 1	S08: 2	U16: 3	S16:4	U32: 5	S32: 6	float: 7

Coding of the list-parameter (list index:value):

Baudrate	$0: 2400$	$1: 4800$	$2: 9600$	$3: 14 \mathrm{k} 4$	$4: 19 \mathrm{k} 2$	$5: 28 \mathrm{k} 8$	$6: 38 \mathrm{k} 4$	$7: 57 \mathrm{k} 6$	$8: 76 \mathrm{k} 8$	$9: 115 \mathrm{k} 2$
Stopbit	$0: 1$	$1: 2$								
Parität	$0:$ even	$1: 0 \mathrm{dd}$	$2:$ none							
load type	$0:$ unbal.	$1:$ bal.								

Power Measurement

Description

The digital power converter AD-LU 40 GT measures all values of the three-phase power grid such as current, voltage, energy, active, reactive, apparent power and frequency and makes this data available via a fieldbus. The device is therefore ideally suited for integration into energy management systems. The ProfiNet variant contains a 2 -port switch for direct forwarding to the next device. 3- or 4-wire networks can be measured. 4 -wire networks may have balanced or unbalanced load. 3 -wire networks must have balanced load. The AD-LU 40 GT is powered by its measuring voltage L1. However, a variant with separate supply terminals and wide-range power supply is also available (AD-LU 40-S GT). The current measurement takes place via the throughput converters attached to the front. For the measurement of higher voltages or currents, external converters can be connected at any time. LEDs on the front panel signal the operating state and the data traffic. The compact design and the high performance combined with low energy consumption allow it to be used in almost any application. In addition, the device has a front-sided RS485 interface to which, for example, the TFT display AD-MM 400 can be connected. Thus, without any great effort, all measured values can be displayed.

Application

Measurement and monitoring of all electrical characteristics in electrical systems. Detection of load profiles for energy management systems, e.g. ISO 50001. Recording the energy consumption of individual consumers. Monitoring of voltage quality variables, e.g. Harmonics. Attention: This is a Class A product according to EN 55011. Additional EMC actions may be necessary when used in small businesses or in residential areas.

Specific characteristics

- Connection of 4-wire systems of any load
- Measurement of currents, voltages, power, power factors, frequency, harmonics
- Low power loss during current measurement thanks to integrated through-current transformers
- Counters for applied and feedback energies
- Counters for inductive and capacitive reactive power
- Fieldbus interface for PROFINET or PROFIBUS
- RS485 interface for connecting a TFT display

Business data

Order number

AD-LU 40 GT-PN AD-LU 40S GT-PN

AD-LU 40 GT-PB
AD-LU 40S GT-PB

Accessory

AD-MM 400

PROFINET

PROFINET, with separate supply terminals
PROFIBUS
PROFIBUS, with separate supply terminals

TFT display for front panel installation

Power Measurement

 PROPT ${ }^{\text {® }}$ CBIT

Technical specifications

Current－inputs（I1．．．I3）
Measuring ranges
Max．conductor diameter
Max．measurable harmonic
Voltage－inputs（L1．．．L3）
Measuring range
Input resistance
PROFINET
Ethernet
Protocol specification
Default IP－address

PROFIBUS

Address setting
Bus termination
Max．length of bus
Cable

RS485－Bus

Software protocol
Data format
Max．bus users
Bus termination
Max．length of bus
Cable
Address setting

0 ．．． 1 A AC； 0 ．．． 5 A AC； 0 ．．． 20 A AC
$4,8 \mathrm{~mm}$
40

80 ．．． 253 V AC（AD－LU 40 GT） 0 ．．． 253 V AC（AD－LU 40S GT） ca． 970 kOhm

2 Port Switch
PROFINET IO
0．0．0．0

BCD－switches 00 ．．． 99
120 ohms both sides at the end 500 m （no stubs）
twisted and shielded

Modbus－RTU
19200，e，8， 1
99
120 ohms both sides at the end
500 m（no spur lines）
twisted and shielded
BCD－switches 00．．． 99

Supply

Voltage range AC
Nominal voltage AC
Power consumption

Supply（－S）

Voltage range AC
Voltage range DC
Nominal voltage AC／DC
Input power AC／DC

Measure
 Basic accuracy

Temperature influence $\quad 80 \mathrm{ppm} / \mathrm{K}$
Sampling interval

Housing

Dimensions（WxHxD）
Type of protection
Connection method
Terminals，wire cross section
Bolting torque terminals
Weight
Manner of fastening
Environmental conditions
Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
${ }^{1)}$ During checking，slight signal deviations are possible．
Electrical safety requirements

Product family standard	EN 61010－1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010－2－030
Measurement category	CAT III

Galvanic isolation，test voltages

Grid side zu bus $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min}$ ．）

Power Measurement

Block and wiring diagram

Dimensions

Power Measurement

 TBDI的宜而

Explanations：

PROFINET：NS－Led（Netzwork Status）：

The NS－LED signals the network status．

LED Status：	Description：	Comments
off	Offline	－no Power －no connection with IO－Controller
green	Online RUN	－connection with IO－Controller established －IO－Controller in RUN Status
green－ 1 flash	Online STOP	－connection with IO－Controller established －IO－Controller in STOP Status －IO－data bad －IRT synchronization not finished
grün－blinking	link mode	－Uses by engineering tools to identify the node on the network
red	fatal event	－Major internal error
rot－1 flash	station name error	－Station name not set
rot－2 flash	IP－Address error	－IP－address not set
rot－3 flash	configuratio error	$-\quad$ Expected identification differs from real identification

PROFINET：MS－Led（Modul Status）：
The MS－LED signals the status of the ProfiNet module in the power meter．

LED Status：	Description：	Comments
off	not initialized	- Nor power or module in＂SETUP＂or＂NW－ INIT＂state
green	normal operation	－Modul has shifted from＂NW－INIT＂state
green－1 flash	diagnostic event	－diagnostic event present
red	exception error or fatal event	- Device in state EXCEPTION or major interna error
alternating red／green	firmwareupdate	- Do not power off the modul－turning the module off during this phase could cause permanent damage

PROFIBUS：OP－Led（Operation Mode）：
The OP－Led signals the operation mode．

LED Status：	Description：	Comments
off	Offline／no power	
green	Online，data exchange	
green－flashing	Online，clear	－See＂Parameterization Data Handling＂in Profibus specification
rot－flash	Parameterization error	See＂Profibus Configuration Error＂in Profibus specification
rot－ 2 flash	Configuration error	

PROFIBUS：ST－Led（Status）：
The ST－Led signals the status of the device．

LED Status：	Description：	Comments
off	Not initialized	－Not initialized jet
green	initialized	－Initialization completed successfully
green－flashing	initialized，diagnostic events present	Extended diagnostic bit is set
rot	Exception error	－Exception error detected

Power Measurement

Modbus－Data（RS485－bus）

address	count register	name	unit	type	read	write
Messwerte：						
40801	2	TOTAL＿ACTIVE＿POWER	kW	float	1	0
40803	2	PHASE＿A＿ACTIVE＿POWER	kW	float	1	0
40805	2	PHASE＿B＿ACTIVE＿POWER	kW	float	1	0
40807	2	PHASE＿C＿ACTIVE＿POWER	kW	float	1	0
40809	2	TOTAL REACTIVE＿POWER	kvar	float	1	0
40811	2	PHASE＿A＿REACTIVE＿POWER	kvar	float	1	0
40813	2	PHASE＿B＿REACTIVE＿POWER	kvar	float	1	0
40815	2	PHASE＿C＿REACTIVE＿POWER	kvar	float	1	0
40817	2	TOTAL＿APPARENT＿POWER	kVA	float	1	0
40819	2	PHASE＿A＿APPARENT＿POWER	kVA	float	1	0
40821	2	PHASE＿B＿APPARENT＿POWER	kVA	float	1	0
40823	2	PHASE＿C＿APPARENT＿POWER	kVA	float	1	0
40825	2	TOTAL＿POWER＿FACTOR		float	1	0
40827	2	PHASE＿A＿POWER＿FACTOR		float	1	0
40829	2	PHASE＿B＿POWER＿FACTOR		float	1	0
40831	2	PHASE＿C POWER FACTOR		float	1	0
40833	2	TOTAL＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40835	2	PHASE＿A＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40837	2	PHASE＿B＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40839	2	PHASE＿C＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40841	2	TOTAL＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40843	2	PHASE＿A＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40845	2	PHASE B ACTIVE HARMONIC＿POWER	kW	float	1	0
40847	2	PHASE＿C＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40849	2	PHASE＿A＿VOLTAGE＿RMS	V	float	1	0
40851	2	PHASE＿B＿VOLTAGE＿RMS	V	float	1	0
40853	2	PHASE＿C＿VOLTAGE＿RMS	V	float	1	0
40855	2	N＿LINE＿CALCULATED＿CURRENT＿RMS	A	float	1	0
40857	2	PHASE＿A CURRENT＿RMS	A	float	1	0
40859	2	PHASE＿B＿CURRENT＿RMS	A	float	1	0
40861	2	PHASE＿C＿CURRENT＿RMS	A	float	1	0
40863	2	CHANNEL＿A＿VOLTAGE＿PEAK	V	float	1	0
40865	2	CHANNEL＿B＿VOLTAGE＿PEAK	V	float	1	0
40867	2	CHANNEL＿C＿VOLTAGE＿PEAK	V	float	1	0
40869	2	CHANNEL＿A＿CURRENT＿PEAK	A	float	1	0
40871	2	CHANNEL＿B＿CURRENT＿PEAK	A	float	1	0
40873	2	CHANNEL＿C＿CURRENT＿PEAK	A	float	1	0
40875	2	FREQUENCY	Hz	float	1	0
40877	2	PHASE＿A＿MEAN＿PHASE＿ANGLE	\bigcirc	float	1	0
40879	2	PHASE B MEAN PHASE ANGLE	－	float	1	0
40881	2	PHASE＿C MEAN PHASE ANGLE	。	float	1	0
40883	2	MEASURED＿TEMPERATURE	${ }^{\circ} \mathrm{C}$	float	1	0
40885	2	PHASE＿A＿VOLTAGE＿PHASE＿ANGLE	－	float	1	0
40887	2	PHASE＿B＿VOLTAGE＿PHASE＿ANGLE	。	float	1	0
40889	2	PHASE＿C＿VOLTAGE＿PHASE＿ANGLE	。	float	1	0
40891	2	PHASE＿AB＿VOLTAGE＿RMS	V	float	1	0
40893	2	PHASE＿BC＿VOLTAGE＿RMS	V	float	1	0
40895	2	PHASE＿CA＿VOLTAGE＿RMS	V	float	1	0

Zähler：

44009	2	ENERGY＿KWH＿TOTAL＿CONSUMPTION	kWh	U32	1
44011	2	ENERGY＿KWH＿TOTAL＿INFEED	kWh	U32	1
44013	2	ENERGY＿KVARH＿TOTAL＿INDUCTIVE	kVarh	U32	1
44015	2	ENERGY＿KVARH＿TOTAL＿CAPACITIVE	kVarh	U32	1
44017	2	ENERGY＿KVAH＿TOTAL＿	kVAh	U32	1
44019	2	WORKING HOURS	kVAh	U32	1
44021	2	LOAD HOURS	kVAh	U32	1

Power Measurement

Circuit examples

ProfiNet／ProfiBus Data

（＊1）	Bit 15	Bit 14	Bit 13	Bit 12	Bit 1	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control Word	－	－	－	－	－	－	－	－	－	－	－	－	－	－	Counte Reset	Softw． Reset
（＊2）	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status Word	－	－	－	－	－	－	－	－	－	High Temp．	13 Overfl．	$\begin{array}{\|l\|} \hline 12 \\ \text { Overfl. } \end{array}$	$\begin{aligned} & \text { I1 } \\ & \text { Overfl. } \end{aligned}$	$\begin{aligned} & \hline \text { L3 } \\ & \text { Error } \end{aligned}$	$\begin{aligned} & \hline \text { L2 } \\ & \text { Error } \end{aligned}$	$\begin{aligned} & \text { L1 } \\ & \text { Error } \end{aligned}$

Power Measurement

Description

The digital power converter AD－LU 45 GT measures all values of the three－phase power grid such as current，voltage，energy，active， reactive，apparent power and frequency and makes this data available via a fieldbus．The device is therefore ideally suited for integration into energy management systems．The ProfiNet variant contains a 2－port switch for direct forwarding to the next device．3－or 4－wire networks can be measured．4－wire networks may have balanced or unbalanced load． 3 －wire networks must have balanced load．The AD－LU 45 GT is powered by its measuring voltage L1．However，a variant with separate supply terminals and wide－range power supply is also available（AD－LU 45－S GT）．The current measurement takes place via external split－core current transformers，which can be mounted on the wire to be measured without cutting．For the measurement of higher voltages，external converters can be connected at any time．LEDs on the front panel signal the operating state and the data traffic．The compact design and the high performance combined with low energy consumption allow it to be used in almost any application．In addition，the device has a front－sided RS485 interface to which，for example，the TFT display AD－MM 400 can be connected． Somit können ohne großen Aufwand auch vor alle Messwerte angezeigt werden．Thus，without any great effort，all measured values can be displayed．

Application

Measurement and monitoring of all electrical characteristics in electrical systems．Detection of load profiles for energy management systems， e．g．ISO 50001．Recording the energy consumption of individual consumers．Monitoring of voltage quality variables，e．g．Harmonics． Attention：This is a Class A product according to EN 55011．Additional EMC actions may be necessary when used in small businesses or in residential areas．

Specific characteristics

－Measurement of currents，voltages，power，power factors，frequency， harmonics
－Connection to external spli－core transformers
－Counters for aktive，reactive and apparent energy
－Fieldbus interface for PROFINET or PROFIBUS
－RS485 interface for connecting a TFT display

Business data

Order number

AD－LU 45 GT－PN
AD－LU 45－S GT－PN
AD－LU 45 GT－PB
AD－LU 45－S GT－PB

Accessory

AD－KSW 50／100／200／400／600 split core current transformer

AD－MM 400

PROFINET
PROFINET，with separate supply terminals
PROFIBUS
PROFIBUS，with separate supply terminals 50／100／200／400／600 A
TFT display for front panel installation

Power Measurement

Technical specifications		Supply	
Current-inputs (11...13)		Voltage range AC	80 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
Measuring ranges	0 ... $33,3 \mathrm{~mA}$ (over split-core-	Nominal voltage AC	230 V AC
Input resistance	transtormer)	Power consumption	max. 4 VA
Max. measurable harmonic	40	Supply (-S)	
Voltage-inputs (L1...L3)		Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Measuring range	80 ... 253 V AC (AD-LU 40 GT)	Voltage range DC	20 ... 253 V DC
	0 ... 253 V AC (AD-LU 40S GT)	Nominal voltage AC/DC	230 V AC / 24 V DC
Input resistance	ca. 970 kOhm	Input power AC/DC	max. $4 \mathrm{VA} / 3 \mathrm{~W}$
PROFINET		Measure	
Ethernet	2 Port Switch	Basic accuracy	
Protocol specification	PROFINET IO	Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Default IP-address	0.0.0.0	Sampling interval	200 ms
PROFIBUS		Housing	
Address setting	BCD-switches 00... 99	Dimensions (WxHxD)	$105 \times 90 \times 71 \mathrm{~mm}$
Bus termination	120 ohms both sides at the end	Type of protection	IP 20
Max. length of bus	500 m (no stubs)	Connection method	screw clamp
Cable	twisted and shielded	Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
RS485-Bus		Bolting torque terminals	0,6 Nm
Software protocol	Modbus-RTU	Weight	$\sim 210 \mathrm{~g}$
Data format	19200, e, 8,1	Manner of fastening	35 mm DIN rail 35 mm
Max. bus users	99	Environmental conditions	
Bus termination	120 ohms both sides at the end	Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Bus termination	120 ohms both sides at the end	Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
Max. length of bus	500 m (no spur lines)	EMC	
Cable	twisted and shielded	Product family standard	EN 61326-1 ${ }^{\text {² }}$
Address setting	BCD-switches 00... 99	Emitted interference	EN 55011, CISPR11 CI. A, Gr. 1
		Electrical safety requirements	
		Product family standard	EN 61010-1
		Overvoltage category	11
		Pollution degree	2
		Safety measurement	EN 61010-2-030
		Measurement category	CAT III
		Galvanic isolation, test voltag	
		Grid side zu bus	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
		Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
		${ }^{1}$ During checking, sight signal deviations are	possible.

Power Measurement

Block and wiring diagram

Dimensions

Power Measurement

 BDEs内自宁

Explanations：

PROFINET：NS－Led（Netzwork Status）：

The NS－LED signals the network status．

LED Status：	Description：	Comments
off	Offline	－no Power －no connection with IO－Controller
green	Online RUN	－connection with IO－Controller established －IO－Controller in RUN Status
green－ 1 flash	Online STOP	－connection with IO－Controller established －IO－Controller in STOP Status －IO－data bad －IRT synchronization not finished
grün－blinking	link mode	－Uses by engineering tools to identify the node on the network
red	fatal event	－Major internal error
rot－1 flash	station name error	－Station name not set
rot－2 flash	IP－Address error	－IP－address not set
rot－3 flash	configuratio error	$-\quad$ Expected identification differs from real identification

PROFINET：MS－Led（Modul Status）：
The MS－LED signals the status of the ProfiNet module in the power meter．

LED Status：	Description：	Comments
off	not initialized	- Nor power or module in＂SETUP＂or＂NW－ INIT＂state
green	normal operation	－Modul has shifted from＂NW－INIT＂state
green－1 flash	diagnostic event	－diagnostic event present
red	exception error or fatal event	- Device in state EXCEPTION or major interna error
alternating red／green	firmwareupdate	- Do not power off the modul－turning the module off during this phase could cause permanent damage

PROFIBUS：OP－Led（Operation Mode）：
The OP－Led signals the operation mode．

LED Status：	Description：	Comments
off	Offline／no power	
green	Online，data exchange	
green－flashing	Online，clear	－See＂Parameterization Data Handling＂in Profibus specification
rot－1 flash	Parameterization error	See＂Profibus Configuration Error＂in Profibus specification
rot－2 flash	Configuration error	

PROFIBUS：ST－Led（Status）：
The ST－Led signals the status of the device．

LED Status：	Description：	Comments
off	Not initialized	－Not initialized jet
green	initialized	－Initialization completed successfully
green－flashing	initialized，diagnostic events present	Extended diagnostic bit is set
rot	Exception error	－Exception error detected

Power Measurement

Modbus－Data（RS485－bus）

address	count register	name	unit	type	read	write
Messwerte：						
40801	2	TOTAL ACTIVE＿POWER	kW	float	1	0
40803	2	PHASE＿A ACTIVE＿POWER	kW	float	1	0
40805	2	PHASE＿B＿ACTIVE＿POWER	kW	float	1	0
40807	2	PHASE＿C＿ACTIVE＿POWER	kW	float	1	0
40809	2	TOTAL REACTIVE＿POWER	kvar	float	1	0
40811	2	PHASE＿A＿REACTIVE＿POWER	kvar	float	1	0
40813	2	PHASE＿B＿REACTIVE＿POWER	kvar	float	1	0
40815	2	PHASE＿C＿REACTIVE＿POWER	kvar	float	1	0
40817	2	TOTAL＿APPARENT＿POWER	kVA	float	1	0
40819	2	PHASE＿A＿APPARENT＿POWER	kVA	float	1	0
40821	2	PHASE＿B＿APPARENT＿POWER	kVA	float	1	0
40823	2	PHASE＿C＿APPARENT＿POWER	kVA	float	1	0
40825	2	TOTAL＿POWER＿FACTOR		float	1	0
40827	2	PHASE＿A＿POWER＿FACTOR		float	1	0
40829	2	PHASE＿B＿POWER＿FACTOR		float	1	0
40831	2	PHASE＿C＿POWER＿FACTOR		float	1	0
40833	2	TOTAL＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40835	2	PHASE＿A＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40837	2	PHASE＿B＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40839	2	PHASE＿C＿ACTIVE＿FUNDAMENTAL＿POWER	kW	float	1	0
40841	2	TOTAL＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40843	2	PHASE＿A＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40845	2	PHASE＿B＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40847	2	PHASE＿C＿ACTIVE＿HARMONIC＿POWER	kW	float	1	0
40849	2	PHASE＿A＿VOLTAGE＿RMS	V	float	1	0
40851	2	PHASE B VOLTAGE＿RMS	V	float	1	0
40853	2	PHASE＿C＿VOLTAGE＿RMS	V	float	1	0
40855	2	N＿LINE＿CALCULATED＿CURRENT＿RMS	A	float	1	0
40857	2	PHASE＿A＿CURRENT＿RMS	A	float	1	0
40859	2	PHASE＿B＿CURRENT＿RMS	A	float	1	0
40861	2	PHASE＿C＿CURRENT＿RMS	A	float	1	0
40863	2	CHANNEL＿A＿VOLTAGE＿PEAK	V	float	1	0
40865	2	CHANNEL＿B＿VOLTAGE＿PEAK	V	float	1	0
40867	2	CHANNEL＿C＿VOLTAGE＿PEAK	V	float	1	0
40869	2	CHANNEL＿A＿CURRENT＿PEAK	A	float	1	0
40871	2	CHANNEL＿B＿CURRENT＿PEAK	A	float	1	0
40873	2	CHANNEL＿C＿CURRENT＿PEAK	A	float	1	0
40875	2	FREQUENCY	Hz	float	1	0
40877	2	PHASE＿A＿MEAN＿PHASE＿ANGLE	－	float	1	0
40879	2	PHASE＿B＿MEAN＿PHASE＿ANGLE	${ }^{\circ}$	float	1	0
40881	2	PHASE＿C＿MEAN＿PHASE＿ANGLE	。	float	1	0
40883	2	MEASURED＿TEMPERATURE	${ }^{\circ} \mathrm{C}$	float	1	0
40885	2	PHASE＿A＿VOLTAGE＿PHASE＿ANGLE	${ }^{\circ}$	float	1	0
40887	2	PHASE＿B＿VOLTAGE＿PHASE＿ANGLE	。	float	1	0
40889	2	PHASE＿C＿VOLTAGE＿PHASE＿ANGLE	。	float	1	0
40891	2	PHASE＿AB＿VOLTAGE＿RMS	V	float	1	0
40893	2	PHASE＿BC＿VOLTAGE＿RMS	V	float	1	0
40895	2	PHASE＿CA＿VOLTAGE＿RMS	V	float	1	0

Zähler：

44009	2	ENERGY＿KWH＿TOTAL＿CONSUMPTION	kWh	U32	1
44011	2	ENERGY＿KWH＿TOTAL＿INFEED	kWh	U32	1
44013	2	ENERGY＿KVARH＿TOTAL＿INDUCTIVE	kVarh	U32	1
44015	2	ENERGY＿KVARH＿TOTAL＿CAPACITIVE	kVarh	U32	1
44017	2	ENERGY＿KVAH＿TOTAL＿	kVAh	U32	1
44019	2	WORKING HOURS	kVAh	U32	1
44021	2	LOAD HOURS	kVAh	U32	1

Power Measurement

Circuit examples

ProfiNet

ProfiNet／ProfiBus Data

P Total［kW］	float	4 Byte	Read
P L1［kW］	float	4 Byte	Read
P L2［kW］	float	4 Byte	Read
P L3［kW］	float	4 Byte	Read
Q Total［kvar］	float	4 Byte	Read
Q L1［kvar］	float	4 Byte	Read
Q L2［kvar］	float	4 Byte	Read
Q L3［kvar］	float	4 Byte	Read
S Total［kVA］	float	4 Byte	Read
S L1［kVA］	float	4 Byte	Read
S L2［kVA］	float	4 Byte	Read
S L3［kVA］	float	4 Byte	Read
Power Factor Total	float	4 Byte	Read
Power Factor L1	float	4 Byte	Read
Power Factor L2	float	4 Byte	Read
Power Factor L3	float	4 Byte	Read
P Fundamental Total［kW］	float	4 Byte	Read
P Fundamental L1［kW］	float	4 Byte	Read
P Fundamental L2［kW］	float	4 Byte	Read
P Fundamental L3［kW］	float	4 Byte	Read
P Harmonic Total［kW］	float	4 Byte	Read
P Harmonic L1［kW］	float	4 Byte	Read
P Harmonic L2［kW］	float	4 Byte	Read
P Harmonic L3［kW］	float	4 Byte	Read
U L1［V］	float	4 Byte	Read
U L2［V］	float	4 Byte	Read
U L3［V］	float	4 Byte	Read
Calculated I N－LINE［A］	float	4 Byte	Read
I L1［A］	float	4 Byte	Read
I L2［A］	float	4 Byte	Read
I L3［A］	float	4 Byte	Read
Peak U L1［V］	float	4 Byte	Read
Peak U L2［V］	float	4 Byte	Read
Peak U L3［V］	float	4 Byte	Read
Peak IL1［A］	float	4 Byte	Read
Peak I L2［A］	float	4 Byte	Read
Peak I L3［A］	float	4 Byte	Read
Frequency［Hz］	float	4 Byte	Read
Angle I L1［ ${ }^{\circ}$ ］	float	4 Byte	Read
Angle I L2［ ${ }^{\circ}$ ］	float	4 Byte	Read
Angle I L3［ ${ }^{\circ}$ ］	float	4 Byte	Read
Angle U L1［ ${ }^{\circ}$ ］	float	4 Byte	Read
Angle U L2［ ${ }^{\circ}$ ］	float	4 Byte	Read
Angle U L3［ ${ }^{\circ}$ ］	float	4 Byte	Read
Counter total extract［kWh］	dword	4 Byte	Read
Counter total feed［kWh］	dword	4 Byte	Read
Counter total ind［kvarh］	dword	4 Byte	Read
Counter total cap［kVarh］	dword	4 Byte	Read
Counter total apparent power［kVAh］	dword	4 Byte	Read
Counter working hours［h］	dword	4 Byte	Read
Param I PRIM［A］	float	4 Byte	Read／Write
Param I SEC［A］	float	4 Byte	Read／Write
Param U PRIM［V］	float	4 Byte	Read／Write
Param U SEC［V］	float	4 Byte	Read／Write
Control Word（＊1）	word	2 Byte	Write
Status Word（＊2）	word	2 Byte	Read
Serial Number	dword	4 Byte	Read
Firmware Version	word	2 Byte	Read
Language	word	2 Byte	Read

（＊1）	Bit 15	Bit 14	Bit 13	Bit 12	Bit 1	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Control Word	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Counter Softw． Reset	Reset

Power Measurement Transducer

Description

The digital power measuring transducer AD-LU 50 GT measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power ...) and converts these measuring values onto two freely scalable analogue outputs ($20 \mathrm{~mA} / 10 \mathrm{~V}$). The unit is therefore optimal suitable for integration in energy management systems. 3- or 4-wire systems can be measured. 4 -wire networks can be loaded balanced or unbalanced, whereby 3 -wire networks can only be measured balanced. The AD-LU 50 GT is supplied via its measuring voltage L1. The current measuring is carried out via the bar-type transformer mounted on the front. For measuring of high voltages or high currents, external transformers can be connected in series at any time. The AD-LU 50 GT can be read out and parameterised via the integral interface with the aid of the available AD-Studio. An LED at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- compact design
- current measurement via clamp on current transfomrers
- supplied via its measuring voltage L1
- current and voltage output
- monitoring all variables of the three-phase network
- parameterization via AD-Studio

Business data

Order number

Power measurement transducer
Accessory (optional)
VarioPass3
AD-Studio

AD-LU 50 GT

USB-Schnittstellenadapter Konfigurationssoftware

Technical specifications		Environmental conditions	
Current-inputs (11...I3)		Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Measuring ranges	0 ... 1 A AC; 0 ... 5 A AC;	Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
	0 ... 20 A AC	EMC	
Max. conductor diameter	$4,8 \mathrm{~mm}$	Product family standard	EN 61326-1 ${ }^{17}$
Max. measurable harmonic	40	Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Voltage-inputs (L1...L3)		Electrical safety requirements	
Measuring range	80 ... 253 V AC	Product family standard	EN 61010-1
Input resistance	> 900 kOhm	Overvoltage category	II
Output current		Pollution degree	2
Output range	0/4 ... 20 mA	Safety measurement	EN 61010-2-030
Max. load	400 Ohm	Measurement category	CAT III
Resolution	11 Bit	Galvanic isolation, test voltages	
Residual ripple	25 MAss	Power supply to analog	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Output voltage		outputs	
Output range	0/2 ... 10 V	Power supply to relay	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Min. load	10 kOhm	Relay to analog outputs	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Resolution	11 Bit	Protection circuits	
Residual ripple	30 mVss	Input	electrical surge protection
Supply		Power supply	protection against over-temperature,
Voltage range AC	80 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)	Analog outputs	over-voltage and over-current electrical surge protection
Nominal voltage AC	230 V AC	${ }^{1)}$ During checking, slight signal deviations are possible.	
Power consumption	max. 3,9 VA		
Transfer behavior - in reference to the current value			
Basic accuracy	< 0,5 \% (class 0.5)		
Temperature influence	80 ppm/K		
Response time	<0,5 s		
Housing			
Dimensions (WxHxD)	$71 \times 90 \times 70 \mathrm{~mm}$		
Type of protection	IP 20		
Connection method	screw clamp		
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire		
Bolting torque terminals	0,6 Nm		
Skinning length	6 mm		
Weight	$\sim 170 \mathrm{~g}$		
Manner of fastening	35 mm DIN rail 35mm		

Power Measurement Transducer

Block and wiring diagram

Dimensions

Hinweis:
Für die Messung symmetrischer Lasten kann das Gerät so umparametriert werden, dass nur ein Stromwandler für die Messung notwendig ist In diesem Fall bitte die Strommessung mit Stromwandler 1 auf Phase L1 durchführen.

Power Measurement Transducer

Description

The digital power measuring transducer AD-LU 55 GT measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power \ldots...) and converts these measuring values onto two freely scalable analogue outputs ($20 \mathrm{~mA} / 10 \mathrm{~V}$). The unit is therefore optimal suitable for integration in energy management systems. 3- or 4-wire systems can be measured. 4-wire networks can be loaded balanced or unbalanced, whereby 3 -wire networks can only be measured balanced. The AD-LU 55 GT is supplied via its measuring voltage L1. The current measuring is carried out via extrenal split-core-current-transformer. For measuring of high voltages, external transformers can be connected in series at any time. The AD-LU 55 GT can be read out and parameterised via the integral interface with the aid of the available AD-Studio. An LED at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- compact design
- current measurement via split-core-current-transfomrers
- supplied via its measuring voltage L1
- current and voltage output
- monitoring all variables of the three-phase network
- parameterization via AD-Studio

Business data

Order number

AD-LU 55 GT

Accessory

AD-KSW 50
AD-KSW 100
AD-KSW 200
AD-KSW 400
AD-KSW 600

Accessory (optional)

VarioPass3
AD-Studio
power measurement transducer
split core current transformer 50 A
split core current transformer 100 A split core current transformer 200 A split core current transformer 400 A split core current transformer 600 A

USB-inetrface adapter configuration software

Power Measurement Transducer

Technical specifications

Current-inputs (I1...I3) Measuring range (via split-core- $0 \ldots 33,3 \mathrm{~mA} \mathrm{AC}$ transformer) Input resistance Max. measurable harmonic	ca. 10 Ohm Voltage-inputs (L1...L3) Measuring range Input resistance
Output current Output range	$80 \ldots 253 \mathrm{~V} \mathrm{AC}$
Max. load	
Resolution	$>900 \mathrm{kOhm}$
Residual ripple	$0 / 4 \ldots 20 \mathrm{~mA}$
Output voltage	400 Ohm
Output range	11 Bit
Min. load	$25 \mu \mathrm{Ass}$
Resolution	$0 / 2 \ldots 10 \mathrm{~V}$
Residual ripple	10 kOhm
Supply	11 Bit
Voltage range AC	30 mVss
Nominal voltage AC	$80 \ldots 253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (see
Power consumption	230 V AC

Transfer behavior - in reference to the current value

Basic accuracy
Temperature influence
Response time

Housing

Dimensions (WxHxD) 71x90x70 mm
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Skinning length
Weight
Manner of fastening
$<0,5 \%$ (class 0.5)
80 ppm/K
$<0,5$ s

IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
0,6 Nm
6 mm
$\sim 170 \mathrm{~g}$
35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference
Electrical safety requirements
Product family standard EN
Overvoltage category
Pollution degree 2

Safety measurement EN 61010-2-030
Measurement category CAT III

Galvanic isolation, test voltages

Power supply to analog $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.) outputs
Power supply to relay $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay to analog outputs $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection

Power supply
protection against over-temperature,
over-voltage and over-current
Analog outputs electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Power Measurement Transducer

Block and wiring diagram

Dimensions

Power Measurement

Description

The AD-LU 60 FE is a measuring and indicator device for front panel fitting. It covers all measuring values in the three-phase network with neutral conductor. The current measuring is carried out via bushing current transformer at the device. The measuring values are shown on a graphic TFT display in colour and are distributed to different indicators. They can be leafed through manually or time-controlled automatic. A basic variant as purely indicator device and variants with modbus interface and digital outputs for counts or limiting values. Device parameterizing can be carried out via a menu at the device itself or via the optional RS-485 interface.

Application

Monitoring and indication of power in the units. Message if limiting values are exceeded, pulse output for energy count, interrogation of measuring values and counters via modbus.

Specific characteristics

- Connection of 3 phases with neutral, any load
- Measurement of P1, P2, P3, Ptot, Q1, Q2, Q3, Qtot, S1, S2, S3, Stot, I1, I2, I3, U1 U2, U3, F, PF1, PF2, PF3, PFtot, harmonics
- Low power loss in the current measurement by integrated through current transformer
- Display of measured values on a graphic TFT display
- Counter for the total absorbed / backfed active energy and inductive / capacitive reactive power
- Two switching output optocouplers with configurable functions as limit or S0 (device variants D, -DB)
- RS-485 interface with Modbus-RTU to read out the measured values and to configure the device parameters (device variants $-\mathrm{B},-\mathrm{DB}$)

Business data

Order number

AD-LU 60 FE
AD-LU 60 FE-D
AD-LU 60 FE-B
AD-LU 60 FE-DB

Grundgerät
2 Open Collector Ausgänge
Modbus-RTU
2 Open Collector Ausgänge, Modbus RTU

Technical specifications	
Current inputs	
Measuring ranges	0 ... 1/5/20 A AC
Maximum wire diameter	$4,8 \mathrm{~mm}^{2}$
Voltage inputs/supply	
Nominal voltage	230 V AC
Rated frequency	50 Hz
Frequency range	40 ... 100 Hz
Measuring range	$80 . . .253$ V AC
Max. power consumption	4 VA
RS485 interface (-B, -DB)	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Max. bus users	32
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
Optocoupler outputs (-D, -DB)	
Max switching voltage, switching current	30 V DC, 50 mA DC
Display	
Type	TFT
Resolution	320x240 Pixel
Accuracy	
Class	0,5
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	96x96x64 mm
Front panel cut out (bxh)	$92 \times 92 \mathrm{~mm}$
Dimensions front	IP 54
Type of protection housing	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Weight	250 g
Manner of fastening	panel-mounting
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\prime \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Grid side to RS485-Bus	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Voltage inputs	PTC resistor
RS485-Bus	electrical surge protection
Optocoupler outputs	electrical surge protection
${ }^{1}$) During checking, slight signal deviations are possible.	

Technical specifications

Optocoupler outputs (-D, -DB)

onditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
-10 ... $70^{\circ} \mathrm{C}$ (no condensation)
EN 61326-1 ${ }^{\text {1 }}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard E
Overvoltage category
Pollution degree 2
Measurement category CAT III
Galvanic isolation, test voltages
Grid side to RS485-Bus $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to control elements $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits
tage inputs
electrical surge protection
electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Power Measurement

Block and wiring diagram

Dimensions

Power Measurement

Description

The digital power converter AD-LU 70 FE measures all values of the three-phase power grid such as current, voltage, energy, active, reactive, apparent power and frequency and makes this data available via a fieldbus. The device is therefore ideally suited for integration into energy management systems. The AD-LU 70 FE is powered by its measuring voltage L1. The current measurement takes place via the current transformer with passing-through hole attached to the back side. For the measurement of higher voltages or currents, external transformer must be used.

Application

Measurement and monitoring of all electrical characteristics in electrical systems. Detection of load profiles for energy management systems, e.g. ISO 50001. Recording the energy consumption of individual consumers.
Attention: This is a Class A product according to EN 55011. Additional EMC actions may be necessary when used in small businesses or in residential areas.

Specific characteristics

- Connection of 4 -wire systems of any load
- Measurement of currents, voltages, power, power factors, frequency
- Low power loss during current measurement thanks to integrated through-current transformers
- Counters for applied and feedback energies
- Counters for inductive and capacitive reactive power
- Fieldbus interface for PROFINET or PROFIBUS

Business data

Order number

AD-LU 70 FE-PN
AD-LU 70 FE-PB

PROFINET
PROFIBUS

Power Measurement

Block and wiring diagram

Power Measurement Transducer

Description

The digital power measuring transducer AD-LU 610 GT measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power etc.) and converts these measuring values onto two freely scalable analogue outputs ($20 \mathrm{~mA} / 10 \mathrm{~V}$). With the integral relay, the switching of limiting values or the output of energy pulses is possible. For output of more frequent energy pulses, the AD-LU 610 GT is alternatively also available with transistor output. The unit is therefore optimal suitable for integration in energy management systems. 3- or 4-wire systems can be measured. 4 -wire networks can be loaded balanced or unbalanced, whereby 3 -wire networks can only be measured balanced. The AD-LU 610 GT is supplied via its measuring voltage L1. The current measuring is carried out via the bar-type transformer mounted on the front. For measuring of high voltages or high currents, external transformers can be connected in series at any time. The AD-LU 610 GT can be read out and parameterised via the integral RS485-interface with the aid of the available AD-Studio. A $96 \times 96 \mathrm{~mm}$ TFT display module can also be connected to this interface. The LEDs at the front signals the operating condition, the RS485-data and the relay-status. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- compact design
- current measurement via clamp on current transfomrers
- supplied via its measuring voltage L1
- current and voltage output
- relay or transistor output
- monitoring all variables of the three-phase network
- parameterization via AD-Studio
- RS485 interface
- TFT-Display AD-MM 400 connectable

Business data

Order number

Relay output
Transistor output

Accessory (optional)

VarioPass3
AD-Studio
AD-MM 400

AD-LU 610 GT
AD-LU 610 GTO

USB-inetrface adapter configuration software TFT-Display

Technical specifications	
Current-inputs (11...13)	
Measuring ranges	$\begin{aligned} & 0 \text {... } 1 \text { A AC; } 0 \text {... } 5 \text { A AC; } \\ & 0 \text {... } 20 \text { A AC } \end{aligned}$
Max. conductor diameter	4,8 mm
Max. measurable harmonic	40
Voltage-inputs (L1...L3)	
Measuring range	80 ... 253 V AC
Input resistance	> 900 kOhm
Output current	
Output range	0/4 ... 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	30 mVss
Relay output	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	potential-free changeover
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 2 \mathrm{~A}$ AC, $\cos ($ phi) $=1$	600000
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	200000
At 24V/2A DC	200000
Pulse length min ... max	$500 \mathrm{~ms} \mathrm{..}$.
Alternative: transistor output	
Maximum switching load DC	$30 \mathrm{~V}, 50 \mathrm{~mA}$
Pulse length min ... max	$50 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Supply	
Voltage range AC	80 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
Nominal voltage AC	230 V AC
Power consumption	max. 4,7 VA
RS485-Bus	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Address switch	$0 . .9$ (0: service position)
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	verdrillt und geschirmt
Transmission behavior - reference to full scale value	
Basic accuracy	< 0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	$<0,5$ s
Housing	
Dimensions (WxHxD)	$71 \times 90 \times 70 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,6 \mathrm{Nm}$
Skinning length	6 mm
Weight	$\sim 170 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Galvanic isolation, test voltages

Power supply to analog $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.) outputs
Power supply to relay $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min}$.)
Relay to analog outputs $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection

Power supply protection against over-temperature,
over-voltage and over-current
Analog outputs electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Power Measurement Transducer

Block and wiring diagram

Dimensions

Modbus Communication

The AD－LU 610 GT has a RS485 bus interface on which the Modbus RTU protocol is used．About this bus interface all measured data of the unit can be read out．
The default standard data format is $19200, \mathrm{e}, 8,1$ ．Adaptation to a different data format is always possible．

data rate： 19200 baud（bits／s）	parity：even	data bit： 8	stop bit： 1

The bus address is set at the front mounted rotary switches．The address 0 is prohibited for bus application．However，on this zero position the device always uses the standard data format（19200，e， 8,1 ）．The position 0 therefore represents a service position，can be used for example at incorrect parameterization．

The AD－LU 610 GT supports two Modbus functions．These are the functions＂Read Holding Registers＂（0x03）and＂Write Multiple Registers＂ （ 0×10 ）．The function＂Read Holding Registers＂data can be read from the device and data is written with＂Write Multiple Registers＂．The individual register width is 16 bits．
Please refer to the Modbus specification for a detailed description of the Modbus communication．This is freely available online，but can also be obtained from the Adamczewski homepage．

The following Modbus data are accessible via the RS485 bus：

start address	no．of registers	name	unit	data type	read	write
Messwerte：						
40501	2	SCA＿TOTAL＿ACTIVE＿POWER	kW	7	1	0
40503	2	SCA PHASE A ACTIVE＿POWER	kW	7	1	0
40505	2	SCA PHASE B ACTIVE POWER	kW	7	1	0
40507	2	SCA＿PHASE＿C＿ACTIVE＿POWER	kW	7	1	0
40509	2	SCA＿TOTAL＿REACTIVE＿POWER	kvar	7	1	0
40511	2	SCA＿PHASE＿A＿REACTIVE＿POWER	kvar	7	1	0
40513	2	SCA＿PHASE＿B＿REACTIVE＿POWER	kvar	7	1	0
40515	2	SCA＿PHASE＿C＿REACTIVE＿POWER	kvar	7	1	0
40517	2	SCA＿TOTAL APPARENT＿POWER	kVA	7	1	0
40519	2	SCA＿PHASE＿A APPARENT＿POWER	kVA	7	1	0
40521	2	SCA＿PHASE＿B＿APPARENT＿POWER	kVA	7	1	0
40523	2	SCA＿PHASE＿C＿APPARENT＿POWER	kVA	7	1	0
40525	2	SCA＿TOTAL＿POWER＿FACTOR		7	1	0
40527	2	SCA PHASE A POWER FACTOR		7	1	0
40529	2	SCA＿PHASE＿B＿POWER＿FACTOR		7	1	0
40531	2	SCA＿PHASE＿C＿POWER＿FACTOR		7	1	0
40533	2	SCA＿TOTAL＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40535	2	SCA＿PHASE＿A＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40537	2	SCA＿PHASE＿B＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40539	2	SCA＿PHASE＿C＿ACTIVE＿FUNDAMENTAL＿POWER	kW	7	1	0
40541	2	SCA＿TOTAL＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40543	2	SCA PHASE＿A ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40545	2	SCA＿PHASE＿B＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40547	2	SCA＿PHASE＿C＿ACTIVE＿HARMONIC＿POWER	kW	7	1	0
40549	2	SCA＿PHASE＿A＿VOLTAGE＿RMS	V	7	1	0
40551	2	SCA＿PHASE＿B＿VOLTAGE＿RMS	V	7	1	0
40553	2	SCA＿PHASE＿C＿VOLTAGE＿RMS	V	7	1	0
40555	2	SCA＿N＿LINE＿CALCULATED＿CURRENT＿RMS	A	7	1	0
40557	2	SCA＿PHASE＿A＿CURRENT＿RMS	A	7	1	0
40559	2	SCA＿PHASE＿B＿CURRENT＿RMS	A	7	1	0
40561	2	SCA＿PHASE＿C＿CURRENT＿RMS	A	7	1	0
40563	2	SCA＿CHANNEL＿A＿VOLTAGE＿PEAK	V	7	1	0
40565	2	SCA＿CHANNEL＿B＿VOLTAGE＿PEAK	V	7	1	0
40567	2	SCA＿CHANNEL＿C＿VOLTAGE＿PEAK	V	7	1	0
40569	2	SCA＿CHANNEL＿A＿CURRENT＿PEAK	A	7	1	0
40571	2	SCA＿CHANNEL＿B＿CURRENT＿PEAK	A	7	1	0
40573	2	SCA＿CHANNEL＿C＿CURRENT＿PEAK	A	7	1	0
40575	2	SCA FREQUENCY	Hz	7	1	0
40577	2	SCA PHASE＿A MEAN PHASE＿ANGLE	－	7	1	0
40579	2	SCA PHASE＿B＿MEAN＿PHASE＿ANGLE	。	7	1	0
40581	2	SCA＿PHASE＿C＿MEAN＿PHASE＿ANGLE	${ }^{\circ}$	7	1	0
40583	2	SCA＿MEASURED＿TEMPERATURE	${ }^{\circ} \mathrm{C}$	7	1	0
40585	2	SCA＿PHASE＿A＿VOLTAGE＿PHASE＿ANGLE	－	7	1	0
40587	2	SCA＿PHASE＿B＿VOLTAGE＿PHASE＿ANGLE	。	7	1	0
40589	2	SCA＿PHASE＿C＿VOLTAGE＿PHASE＿ANGLE	。	7	1	0
40591	2	SCA VOLATGE L1 L2	V	7	1	0
40593	2	SCA＿VOLATGE L2 L3	V	7	1	0
40595	2	SCA＿VOLATGE L3 L1	V	7	1	0

Modbus-Data						
start address	register count	name	unit	type	read	write
List-parameters:						
41001	1	LIST_LOADTYPE		3	1	1
41003	1	LIST_BAUDRATE		3	1	1
41004	1	LIST_STOPBIT		3	1	1
41005	1	LIST_PARITY		3	1	1
41006	1	LIST_MEASSUREMENT_ASSIGNMENT_IOUT		3	1	1
41007	1	LIST_MEASSUREMENT_ASSIGNMENT_UOUT		3	1	1
41008	1	LIST_RELAY_FUNCTION		3	1	1
41009	1	LIST_MEASSUREMENT_ASSIGNMENT_REL_S0		3	1	1
41010	1	LIST_MEASSUREMENT_ASSIGNMENT_REL_LIMIT		3	1	1
41011	1	LIST_RELAIS_WORKING_TYPE		3	1	1
Data-parameters:						
41501	2	DATA FILTER	s	7	1	1
41503	2	DATA_PRIMARY_CURRENT	A	7	1	1
41505	2	DATA_SECUNARY_CURRENT	A	7	1	1
41507	2	DATA_PRIMARY_VOLTAGE	V	7	1	1
41509	2	DATA_SECUNDARY VOLTAGE	V	7	1	1
41511	2	DATA_REL SWITCH_ON_TIME	V	7	1	1
41513	2	DATA_REL_SWITCH_OFF_TIME	V	7	1	1
41515	2	DATA_REL_SO_PULSE_VALUE	V	7	1	1
41517	2	DATA REL PULSE LENGHT	V	7	1	1
Counter:						
43503	2	COUNTER KWH TOTAL CONSUPTION	kWh	5	1	1
43505	2	COUNTER_KWH_TOTAL_INFEED	kWh	5	1	1
43507	2	COUNTER_KVARH_TOTAL_INDUCTIVE	kVarh	5	1	1
43509	2	COUNTER_KVARH_TOTAL_CAPACITIVE	kVarh	5	1	1
43511	2	COUNTER_KVAH_TOTAL	kVAh	5	1	1

Legend of the Datatypes:

U08: 1	S08:2	U16:3	S16:4	U32:5	S32: 6	float: 7

Encoding of the list-parameters (list index:value):

load type	0:unequal	1:equal								
baudrate	0:2400	1:4800	2:9600	3:14k4	4:19k2	5:28k8	6:38k4	7:57k6	8:76k8	9:115k2
stopbit	0:1	1:2								
parity	0:even	1:odd	2:none							
meass. assignm. lout	Index corresponds to measured value list: starting from 0									
meass. assignm. Uout	Index corresponds to measured value list: starting from 0									
relay function	0 :limit.	1:S0	2:window	3:energy -direction						
meass. assign. Rel S0	0:Ptot C.	1:Ptot I.	2:Qtot L	3:Qtot C	4:Stot					
meass. assign. Rel limit	Index corresponds to measured value list: starting from 0									
working type Rel	0:work	1:rest								

Power Measurement

Description

The digital power measuring transducer AD-LU 320 GVD measures all quantities of the power-network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. The unit is therefore optimal suitable for integration in energy management systems. For measuring of high voltages or high currents, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Measurement of a phase
- Measuring quantities: active power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics (active power), energy metering
- current and voltage output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-LU 320 GVD
Accessory (optional)
Operating module
USB programming adapter
Configuration software
AD-VarioControl
AD-VarioPass
AD-Studio

Technical specifications

Input current	
Measuring ranges	0 ... 1 A AC; $0 \ldots 5$ A AC
Max. measurable harmonic	40
Input voltage	
Measuring range	$10 . .253 \mathrm{~V}$ AC
Input resistance	> 1 MOhm
Output current	
Output range	0/4 ... 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	20 mVss
Supply	
Voltage range AC	50 ... 253 V AC, 50/60 Hz
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . .253 \mathrm{~V}$ DC
Power consumption AC / DC	3,4 VA / 1,8 W
Power consumption with operating module AC / DC	3,6 VA / 2,0 W
Transmission behaviour	
Basic accuracy	< 0,5 \% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	< 0,5 s (0... 90 \%, 100... 10 \%)

Technical specifications	
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	$\sim 150 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\prime \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
${ }^{1}$) During checking, slight signal deviations are	possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to analog outputs / power- $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
supply
Power-supply to analog out $3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits	
Input	electrical surge protection
Power supply	protection against over-temperature, over-voltage and over-current electrical surge protection
Analog outputs	

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits

Dimensions

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 320 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40569	2	current peak L1	A	7	1	0
40575	2	frequency	Hz	7	1	0
40585	2	phase angle Psi L1	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The digital power measuring transducer AD-LU 325 GVD measures all quantities of the power-network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. The unit is therefore optimal suitable for integration in energy management systems. The current is measured via additionally available split-core current transformers. For measuring of high voltages, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Measurement of a phase

- Current measurement via split-core current transformers up to 600 A
- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics (active power), energy metering
- current and voltage output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data	
Order number	
AD-LU 325 GVD	
Accessory (optional)	
AD-split core current transformer	5/50/100/200/400/600 A AC
Operating module	AD-VarioControl
USB programming adapter	AD-VarioPass
Configuration software	AD-Studio
Technical specifications	
Input current	
Measuring ranges	0 ... $0,05 \mathrm{~A}$ AC from split core current transformer
Max. measurable harmonic	40
Input voltage	
Measuring range	10 ... 253 V AC
Input resistance	> 1 MOhm
Output current	
Output range	0/4 .. 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25 HAss
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	20 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . .253$ V DC
Power consumption AC / DC	3,4 VA / 1,8 W
Power consumption with operating module AC / DC	3,6 VA / 2,0 W
Transmission behaviour	
Basic accuracy	< 0,5 \% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	< 0,5 s (0... $90 \%, 100 \ldots 10 \%)$

Technical specifications
Input current

Max. measurable harmonic
Input voltage
Measuring range

Output current
Output range
Resolution
Residual ripple
Output voltage
Output range
Resolution
Residual ripple
Supply
oltage range AC
/ DC

Power consumption AC / DC
ver consumption with

ransmission behaviour

Temperature influence
Response time

0 ... 0,05 A AC from split core current 40

10 ... 253 V AC
>1 MOhm

0/4 ... 20 mA
Bit
11 Bit

0/2 ... 10 V
10 kOhm
11 Bit
20 mVss

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$ 230 V AC / 24 V DC
20 ... 253 V DC
3,4 VA / 1,8 W
3,6 VA / 2,0 W
< 0,5 \% (class 0.5)
$<0,5 \mathrm{~s}(0 \ldots 90 \%, 100 \ldots 10 \%)$

Technical specifications	
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Skinning length	6 mm
Weight	$\sim 145 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\prime \prime}$
Emitted interference ${ }^{1}$ During checking, slight signal deviations are	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to analog outputs / power- $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
supply
Power-supply to analog out $3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits Input	electrical surge protection Power supply
protection against over-temperature, over-voltage and over-current electrical surge protection	

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits

Dimensions

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 325 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40569	2	current peak L1	A	7	1	0
40575	2	frequency	Hz	7	1	0
40585	2	phase angle Psi L1	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The digital power measuring transducer AD-LU 620 GVF measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. With the integral relay and transistor output, the switching of limiting values or the output of energy pulses is possible. The unit is therefore optimal suitable for integration in energy management systems. For measuring of high voltages or high currents, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition and the relay-status. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Connection of 3 phases with neutral, any load
- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics, energy metering
- current and voltage output
- relay or transistor output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 33 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data	
Order number AD-LU 620 GVF	
Accessory (optional) Operating module USB programming adapter Configuration software	AD-VarioControl AD-VarioPass AD-Studio
Technical specifications	
Current-inputs (11...I3) Measuring ranges Max. measurable harmonic	$\begin{aligned} & 0 \ldots 1 \text { A AC; } 0 \ldots 5 \text { A AC } \\ & 40 \end{aligned}$
Voltage-inputs (L1...L3) Measuring range Input resistance	$\begin{aligned} & 10 \ldots 253 \mathrm{~V} \mathrm{AC} \\ & >1 \mathrm{MOhm} \end{aligned}$
Output current Output range Max. load Resolution Residual ripple	$\begin{aligned} & 0 / 4 \ldots 20 \mathrm{~mA} \\ & 400 \text { Ohm } \\ & 11 \text { Bit } \\ & 25 \text { нAss } \end{aligned}$
Output voltage Output range Min. load Resolution Residual ripple	$\begin{aligned} & 0 / 2 \ldots 10 \mathrm{~V} \\ & 10 \mathrm{kOhm} \\ & 11 \text { Bit } \\ & 20 \mathrm{mVss} \end{aligned}$
Semiconductor output Maximum switching load DC Pulse length min ... max	$30 \mathrm{~V}, 50 \mathrm{~mA}$ $50 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Relay output	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC Contact construction	$50 \mathrm{~V}, 2 \mathrm{~A}$ potential-free changeover
Switching operations mechanical	$1 * 10^{7}$
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
At 24V/2A DC	$2 * 10^{5}$
Pulse length min ... max	$500 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . . .253 \mathrm{~V}$ DC
Power consumption AC / DC	4,6 VA / 2,4 W
Power consumption with operating module AC / DC	4,8 VA / 2,6 W
Transmission behaviour	
Basic accuracy	< 0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	<0,5 s

Power Measurement

Technical specifications	
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$33 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$33 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	$\sim 190 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {² }}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
1) During checking, slight signal deviations are	possible.
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to outputs / power-supply $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power-supply to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay contacts to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection
Power supply
Analog outputs

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
A / Opto: LED for semiconductor switch
on - activated
B / rel: LED for relays
on - activated
AD-PC: Communication interface for configuration by a PC

Communication interface for VarioControl

Dimensions

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 620 GVF via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40505	2	active power total L2	kW	7	1	0
40507	2	active power total L3	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40513	2	reactive power L2	kvar	7	1	0
40515	2	reactive power L3	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40521	2	apparent power L2	kVA	7	1	0
40523	2	apparent power L3	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40529	2	power factor in L2		7	1	0
40531	2	power factor in L3		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40537	2	active fundamental power L2	kW	7	1	0
40539	2	active fundamental power L3	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40545	2	active harmonic power L2	kW	7	1	0
40547	2	active harmonic power L3	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40551	2	voltage L2 / N	V	7	1	0
40553	2	voltage L3 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40559	2	current in L2	A	7	1	0
40561	2	current in L3	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40565	2	voltage peak L2	V	7	1	0
40567	2	voltage peak L3	V	7	1	0
40569	2	current peak L1	A	7	1	0
40571	2	current peak L2	A	7	1	0
40573	2	current peak L3	A	7	1	0
40575	2	frequency	Hz	7	1	0
40577	2	phase angle Phi L1	-	7	1	0
40579	2	phase angle Phi L2	${ }^{\circ}$	7	1	0
40581	2	phase angle Phi L3	${ }^{\circ}$	7	1	0
40583	2	temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40585	2	phase angle Psi L1	-	7	1	0
40587	2	phase angle Psi L2	。	7	1	0
40589	2	phase angle Psi L3	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The digital power measuring transducer AD-LU 625 GVF measures all quantities of the three-phase network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. With the integral relay and transistor output, the switching of limiting values or the output of energy pulses is possible. The unit is therefore optimal suitable for integration in energy management systems. The current is measured via additionally available split-core current transformers. For measuring of high voltages, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition and the relay-status. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Connection of 3 phases with neutral, any load
- Current measurement via split-core current transformers up to 600 A
- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics, energy metering
- current and voltage output
- relay or transistor output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 33 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data	
Order number	
Accessory (optional)	
AD-split core current transformer	5/50/100/200/400/600 A AC
Operating module	AD-VarioControl
USB programming adapter	AD-VarioPass
Configuration software	AD-Studio
Technical specifications	
Current-inputs (11...13)	
Measuring ranges	0 ... 0,05 A AC from split core current transformer
Max. measurable harmonic	40
Voltage-inputs (L1...L3)	
Measuring range	10 ... 253 V AC
Input resistance	> 1 MOhm
Output current	
Output range	0/4 ... 20 mA
Max. load	400 Ohm
Resolution	11 Bit
Residual ripple	25μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. load	10 kOhm
Resolution	11 Bit
Residual ripple	20 mVss
Semiconductor output	
Maximum switching load DC	$30 \mathrm{~V}, 50 \mathrm{~mA}$
Pulse length min ... max	$50 \mathrm{~ms} . . .10000 \mathrm{~ms}$
Relay output	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	potential-free changeover
Switching operations mechanical	$1{ }^{*} 10^{7}$
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
At $230 \mathrm{~V} / 2 \mathrm{~A} A C, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
At 24V/2A DC	$2 * 10^{5}$
Pulse length min ... max	500 ms ... 10000 ms
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC / DC	230 V AC / 24 V DC
Voltage range DC	$20 . . .253$ V DC
Power consumption AC / DC	4,6 VA / 2,4 W
Power consumption with operating module AC / DC	4,8 VA / 2,6 W
Transmission behaviour	
Basic accuracy	< 0,5\% (class 0.5)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	<0,5 s

Technical specifications	
Housing	
Dimensions (WxHxD)	$33 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$33 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	$\sim 180 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{\text {² }}$
Emitted interference ${ }^{1}$ During checking, sight signal deviations are	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Block and wiring diagram

Galvanic isolation, test voltages

Input to outputs / power-supply $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power-supply to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay contacts to outputs $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection
Power supply protection against over-temperature, over-voltage and over-current electrical surge protection

Display and operating elements

On: LED for operating display in green
on - normal operation
flashing - Signal failure, signal outside range limits
A / Opto: LED for semiconductor switch
on - activated
B / rel: LED for relays
on - activated
AD-PC: Communication interface for configuration by a PC

Communication interface for VarioControl

Dimensions

\qquad ${ }^{9}|10|+11 \mid 1$ 000000
\qquad 00000000000

Circuit examples

Power Measurement

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-LU 625 GVF via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40202	1	digital output A		3	1	1
40203	1	digital output B		3	1	1
40204	1	digital output A LED		3	1	1
40205	1	digital output B LED		3	1	1
40501	2	active power total	kW	7	1	0
40503	2	active power total L1	kW	7	1	0
40505	2	active power total L2	kW	7	1	0
40507	2	active power total L3	kW	7	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40513	2	reactive power L2	kvar	7	1	0
40515	2	reactive power L3	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40521	2	apparent power L2	kVA	7	1	0
40523	2	apparent power L3	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40529	2	power factor in L2		7	1	0
40531	2	power factor in L3		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40537	2	active fundamental power L2	kW	7	1	0
40539	2	active fundamental power L3	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40545	2	active harmonic power L2	kW	7	1	0
40547	2	active harmonic power L3	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40551	2	voltage L2 / N	V	7	1	0
40553	2	voltage L3 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40559	2	current in L2	A	7	1	0
40561	2	current in L3	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40565	2	voltage peak L2	V	7	1	0
40567	2	voltage peak L3	V	7	1	0
40569	2	current peak L1	A	7	1	0
40571	2	current peak L2	A	7	1	0
40573	2	current peak L3	A	7	1	0
40575	2	frequency	Hz	7	1	0
40577	2	phase angle Phi L1	${ }^{\circ}$	7	1	0
40579	2	phase angle Phi L2	\bigcirc	7	1	0
40581	2	phase angle Phi L3	${ }^{\circ}$	7	1	0
40583	2	temperature	${ }^{\circ} \mathrm{C}$	7	1	0
40585	2	phase angle Psi L1	${ }^{\circ}$	7	1	0
40587	2	phase angle Psi L2	${ }^{\circ}$	7	1	0
40589	2	phase angle Psi L3	${ }^{\circ}$	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	1	1

Legend of the datatypes:

U08: 1	S08:	U16:3	S16:4	U32:5	S32: 6	float: 7

Power Measurement

Description

The AD-LU 650 GT is a digital measuring transducers for the acquisition of all measured variables in the three-phase network. In addition to the fundamental oscillations, the harmonics up to the 32nd harmonic are also measured for currents and voltages. In addition to the three phase currents, the current in the neutral conductor can also be measured. Any measured variable can be assigned to each analog output. Each digital output can be assigned its own function such as limit value monitoring or pulse output for an energy meter. All measured data can be read out via the Modbus-RTU interface. With an optional display device such as the AD-MM 400 FE or the AD-MM 500 FE, the data can be displayed and the device can be configured if necessary.

Application

Transducer for a maximum of any 4 three-phase current quantities. Limiting value indicator for monitoring of a maximum of 2 three-phase current quantities. Registration of all relevant measuring quantities of the three-phase current network and supply of the measuring quantities via a modbus interface.

Specific characteristics

- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, energy metering
- Four bipolar analogue outputs as current output or voltage output, configurable per software
- Two switching outputs as relay or opto-coupler. Functions: limiting value, window, trend, S0, monitor
- Meter for effective energy, reactive energy and apparent energy
- Values for each phase and they can be polled as sum
- Output of up to four measuring quantities of the three-phase current network such as effective power, current, voltage or frequency
- Indication of the power fed back into the network is possible via analogue output and/or switching output
- Connection configurations: single-phase, three-phase current with/without neutral conductor, equally/unequally loaded
- All measuring quantities can be read out via modbus
- All measuring ranges, output ranges and device functions can be configured per software with a PC programme.

Business data	
Order number	
AD-LU 650 GT	Integrierte Ringkernstromwandler
Accessory	
USB programming adapter	VarioPass
Technical specifications	
Spannungseingänge L1, L2, L3 gegen N	
Nominal voltage 230 V AC	
Maximale Spannung 300 V AC	
Input resistance 1 MOhm	
Peak load $600 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~s}$	
Current inputs	
Number	4 (L1, L2, L3 und N)
Nennstrombereich	0 ... 20 A AC
Strommessung	Integrierte Ringkernstromwandler
Analog outputs	
Number	4
Type	Strom oder Spannung, per Software konfigurierbar
Current outputs	
Maximum output range	-21 ... 21 mA
Max. burden	400 Ohm
Max. residual ripple	40μ Ass
Voltage outputs	
Maximum output range	-10,5 ... 10,5 V
Min. burden	10 kOhm
Max. residual ripple	20 mVss
Digitalausgänge	
Number	3
Type	Optisch, MOS-Relais
Maximum switching voltage	60 V AC/DC
Maximum switching current	$550 \mathrm{~mA} \mathrm{AC/DC}$
Accuracy	
Accuracy class	0,5\%
Temperature influence	< $200 \mathrm{ppm} / \mathrm{K}$
Frequency influence	$\sim 0,2 \%, 40 \ldots 60 \mathrm{~Hz}$
Influence of phase angle	$\sim 0,2 \%, 40 \ldots 60 \mathrm{~Hz}$
Response time	$\sim 500 \mathrm{~ms}, 10$... 90%
Auflösung Strom	1 mA
Auflösung Spannung	10 mV
Communication interface	
Physical	RS-485
Parameter	19200, 8, 1, even
Protocol	Modbus RTU
Supply	
DC	$21 . . .253 \mathrm{~V}$ DC, 3,5 W
AC	50 ... 253 V AC, 6 VA

Power Measurement

Technical specifications

Housing

Type of protection	IP 20
Connection method	screw clamp
Cross section fine wire	$2,5 \mathrm{~mm}^{2}$
Cross section one wire	$4 \mathrm{~mm}^{2}$
Mounting	DIN rail mounting
Weight	$\sim 400 \mathrm{~g}$

Environmental conditions

Operating temperature
Storage, transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-25 \ldots 80^{\circ} \mathrm{C}$

Electromagnetic compatibility

Product family standard
EN 61326-1
Emission
EN 55011, CISPR11 CI. B, Gr. 1
During an interference effect slight signal deviations are possible.

Electrical safety requirements

Product family standard EN 60688
Overvoltage category III
Pollution degree
2
Isolation-voltage
Test voltage input/output 500 V AC

Test voltage output/supply
Prüfspannung
5 kV RMS, 1 Min.

Eingang/Versorgung

Power Measurement

Block and wiring diagram

Dimensions

Power Measurement

AD-LU 655 GT

Description

The AD-LU 655 GT is a digital measuring transducer for the acquisition of all measured variables in the three-phase network. Currents are detected via external folding current transformers. In addition to the fundamental oscillations, the harmonics up to the 32nd harmonic are also measured for currents and voltages. In addition to the three phase currents, the current in the neutral conductor can also be measured. Any measured variable can be assigned to each analog output. Each digital output can be assigned its own function such as limit value monitoring or pulse output for an energy meter. All measured data can be read out via the Modbus-RTU interface. With an optional display device such as the AD-MM 400 FE or the AD-MM 500 FE, the data can be displayed and the device can be configured if necessary.

Application

Transducer for a maximum of any 4 three-phase current quantities. Limiting value indicator for monitoring of a maximum of 2 three-phase current quantities. Registration of all relevant measuring quantities of the three-phase current network and supply of the measuring quantities via a modbus interface.

Technical specifications

Spannungseingänge L1, L2, L3 gegen N
Nominal voltage 230 V AC

Maximale Spannung
Input resistance
Peak load

Current inputs

Number
Nennstrombereich
Strommessung
Input resistance
Analog outputs
\quad Number
Type

Current outputs
Maximum output range
Max. burden
Max. residual ripple

Voltage outputs

Maximum output range
Min. burden
Max. residual ripple
Digitalausgänge
Number
Type
Maximum switching voltage
Maximum switching current

Accuracy

Accuracy class
Temperature influence
Frequency influence
Influence of phase angle
Response time

Communication interface

Physical
Parameter
Protocol

Supply

DC
AC

300 V AC 1 MOhm
600 V AC, 1 s

4 (L1, L2, L3 und N)
0 ... 33,3 mA AC
Externe Klappstromwandler ~ 10 Ohm

4
Strom oder Spannung, per Software konfigurierbar
-21... 21 mA
400 Ohm
40μ Ass
-10,5 ... 10,5 V
10 kOhm
20 mVss

3
Optisch, MOS-Relais
60 V AC/DC
550 mA AC/DC

0,5\%
< 200 ppm/K
~0,2 \%, $40 \ldots 60 \mathrm{~Hz}$
~0,2 \%, $40 \ldots 60 \mathrm{~Hz}$
$\sim 500 \mathrm{~ms}, 10 \ldots 90 \%$

RS-485
19200, 8, 1 , even
Modbus RTU

21 ... 253 V DC, 3,5 W
50 ... 253 V AC, 6 VA

Power Measurement

Technical specifications

Housing

Type of protection	IP 20
Connection method	screw clamp
Cross section fine wire	$2,5 \mathrm{~mm}^{2}$
Cross section one wire	$4 \mathrm{~mm}^{2}$
Mounting	DIN rail moun
Weight	$\sim 400 \mathrm{~g}$
Environmental conditions	
Operating temperature Storage, transport	$-10 \ldots 50^{\circ} \mathrm{C}$
	$-25 \ldots 80^{\circ} \mathrm{C}$

Electromagnetic compatibility

Product family standard EN 61326-1
Emission EN 55011, CISPR11 CI. B, Gr. 1
During an interference effect slight signal deviations are possible.

Electrical safety requirements

Product family standard EN 60688
Overvoltage category III
Pollution degree 2
Isolation-voltage
Test voltage input/output
Test voltage output/supply
Prüfspannung
2
500 V AC
5 kV RMS, 1 Min.
4 kV RMS, 1 Min.
5 kV RMS, 1 Min.
Eingang/Versorgung

Block and wiring diagram

Dimensions

Power Measurement

Description

The AD-LU 650 GA is a programmable transmitter for measuring all parameters such as power, voltage, current or frequency in the mains. The mains system can be single-phase or three-phase. Any measured quantity can be allocated to each analogue outlet. The measuring ranges can be configured in wide ranges. Filters, which can be individually parameterized, supplement the adaption possibilities of the measuring task. Each switching output can be assigned to a specific function. Possible functions include, for example, Limit or pulse output for energy metering.

Application

Transducer for a maximum of any 4 three-phase current quantities. Limiting value indicator for monitoring of a maximum of 2 three-phase current quantities. Registration of all relevant measuring quantities of the three-phase current network and supply of the measuring quantities via a modbus interface.

Specific characteristics

- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, energy metering
- Four bipolar analogue outputs as current output or voltage output, configurable per software
- Two switching outputs as relay or opto-coupler. Functions: limiting value, window, trend, S0, monitor
- Meter for effective energy, reactive energy and apparent energy
- Values for each phase and they can be polled as sum
- Output of up to four measuring quantities of the three-phase current network such as effective power, current, voltage or frequency
- Indication of the power fed back into the network is possible via analogue output and/or switching output
- Connection configurations: single-phase, three-phase current with/without neutral conductor, equally/unequally loaded
- All measuring quantities can be read out via modbus
- All measuring ranges, output ranges and device functions can be configured per software with a PC programme.

Business data

Order information

AD-LU 650 GA
Preconfigured optional
Optocoupler outputs optional
please enter the options when ordering in clear text.

Technical specifications

Voltage inputs

U1N, U2N, U3N Nominal	230 V AC
U1N, U2N, U3N Max	300 V AC
Current consumption per phase	0,5 mA AC
Peak load	$600 \mathrm{~V} \mathrm{AC}, \mathrm{1s}$

Current inputs

Rated current I1, I2, I3
Peak load
Continuous load Input resistance per phase

Analog outputs

Number
Current or voltage configurable

Current outputs

Max. residual ripple	$40 \mu \mathrm{Ass}$
Max. burden	400 Ohm
Maximum output range	$-21 \ldots 21 \mathrm{~mA}$
Voltage outputs	
Max. residual ripple	20 mVss
Min. burden	10 kOhm
Maximum output range	$-10,5 \ldots 10,5 \mathrm{~V}$
Contact outputs	2
Closing contact Switching capacity AC Switching capacity DC	$250 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A}, 50 \mathrm{~Hz}$
Optocoupler outputs	
Switching capacity DC	$30 \mathrm{~V} \mathrm{DC,50mA} \mathrm{DC}$

Accuracy

Accuracy class
Temperature influence
Frequency influence
Influence of phase angle
Response time

Communication interface

Physical
Parameter
Protocol

Supply

DC
AC

4
230 V AC
00 V AC

600 V AC, 1s

0 ... 1 A AC, 0 ... 5 A AC
100 A AC, 1s
6 A AC
~20 mOhm

Power Measurement

Technical specifications

Housing

Type of protection	IP 20
Connection method	screw clamp
Cross section fine wire	$2,5 \mathrm{~mm}^{2}$
Cross section one wire	$4 \mathrm{~mm}^{2}$
Mounting	DIN rail mounting
Weight	$\sim 450 \mathrm{~g}$
Environmental conditions	
Operating temperature Storage, transport	$-10 \ldots 50^{\circ} \mathrm{C}$
Electromagnetic compatibility	$-25 \ldots 80^{\circ} \mathrm{C}$
Product family standard	EN $61326-1$
Emission	EN $55011, \mathrm{CISPR} 11$
During an interference effect slight signal deviations are possible.	
Electrical safety requirements	
Product family standard	EN 60688
Overvoltage category	III
Pollution degree	2
Isolation-voltage	500 V AC
Test voltage input/output	5 kV RMS, 1 Min.
Test voltage output/supply	4 kV RMS, 1 Min.

Block and wiring diagram

Dimensions

Power Measurement

AD-LU 650 GA

Circuit examples

3 Phasen, 4 Leiter, ungleiche Last 3 phases, 4 wire, unbalanced load

3 Phasen, 3 Leiter, ungleiche Last 3 phases, 3 wire, unbalanced load

3 Phasen, 3 Leiter, gleiche Last 3 phases, 3 wire, balanced load

Description

The AD-LU 680 GA is a programmable transmitter for measuring all parameters such as power, voltage, current or frequency in the mains. The currents are registered via external clamp-on current transformer. Any measured quantity can be allocated to each analogue outlet. The measuring ranges can be configured in wide ranges. Filters, which can be individually parameterized, supplement the adaption possibilities of the measuring task. Each switching output can be assigned to a specific function. Possible functions include, for example, Limit or pulse output for energy metering.

Application

Measurement and analog output of up to 4 signals in a three-phase mains. Easy recording of currents by external clamp-on current transformer CT. Limit indicators for monitoring of up to 2 signals in a three-phase mains. Analogue front-end for energy management systems. Registration of all relevant measuring quantities of the threephase current network and supply of the measuring quantities via a modbus interface.

Specific characteristics

- Measuring quantities: effective power, reactive power, apparent power, currents and voltages, frequency, power factor, energy metering
- The currents are registered via external clamp-on current transformer.
- Four bipolar analogue outputs as current output or voltage output, configurable per software
- Two switching outputs as relay or opto-coupler. Functions: limiting value, window, trend, S 0 , monitor
- Meter for effective energy, reactive energy and apparent energy
- Values for each phase and they can be polled as sum
- Output of up to four measuring quantities of the three-phase current network such as effective power, current, voltage or frequency
- Indication of the power fed back into the network is possible via analogue output and/or switching output
- Connection configurations: single-phase, three-phase current with/without neutral conductor, equally/unequally loaded
- All measuring quantities can be read out via modbus
- All measuring ranges, output ranges and device functions can be configured per software with a PC programme.

Business data

Order number

AD-LU 680 GA	
Preconfigured	optional
Optocoupler outputs	optional

Current transformers, not included

Current transformers, not included	
KSW 50	$50 \mathrm{~A} / 33,3 \mathrm{~mA}$
KSW 100	$100 \mathrm{~A} / 33,3 \mathrm{~mA}$
KSW 200	$200 \mathrm{~A} / 33,3 \mathrm{~mA}$
KSW 400	$400 \mathrm{~A} / 33,3 \mathrm{~mA}$
KSW 600	$600 \mathrm{~A} / 33,3 \mathrm{~mA}$
Please order the required CTs with the product.	

Technical specifications

Voltage inputs

U1N, U2N, U3N Nominal 230 V AC
U1N, U2N, U3N Max
300 V AC
Current consumption per
$0,5 \mathrm{~mA} A C$
phase
Peak load
$600 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~s}$

Current inputs

ATTENTION! DO NOT CONNECT CTs WITH 1/5A.
Rated current I1, $12,13 \quad 0 \ldots 33,3 \mathrm{~mA} \mathrm{AC}$
Peak load
$700 \mathrm{~mA} A \mathrm{AC}, 1 \mathrm{~s}$
Continuous load
Input resistance per phase $\sim 10 \mathrm{Ohm}$
Analog outputs
Number 4
Current or voltage configurable
Current outputs

Max. residual ripple	40μ Ass
Max. burden	400 Ohm
Maximum output range	$-21 \quad 21 \mathrm{~mA}$

Voltage outputs

Max. residual ripple $\quad 20 \mathrm{mVss}$

Min. burden $\quad 10$ kOhm
Maximum output range $\quad-10,5 \ldots 10,5 \mathrm{~V}$

Contact outputs

Closing contact
Switching capacity AC
Switching capacity DC
Optocoupler outputs
Switching capacity DC
Accuracy
Accuracy class
Temperature influence
Frequency influence
Influence of phase angle
Response time
Communication interface
Physical
Parameter
Protocol

400 Ohm
-21 ... 21 mA

20 mVss

2

250 V AC, $2 \mathrm{~A}, 50 \mathrm{~Hz}$ 50 V DC, 2A

30 V DC, 50 mA DC

$$
0,5 \%
$$

< 200 ppm/K
~0,2 \%, $40 \ldots 60 \mathrm{~Hz}$
~0,2 \%, $40 \ldots 60 \mathrm{~Hz}$
~500 ms, $10 \ldots 90 \%$

RS-485
19200, 8, 1 , even
Modbus RTU

Technical specifications

Supply

DC	$20 \ldots 253 \mathrm{~V} \mathrm{DC} 5 W$,
AC	$50 \ldots 253 \mathrm{~V} \mathrm{AC,9} 9 \mathrm{VA}$

Housing

Type of protection
Connection method
Cross section fine wire
Cross section one wire
Mounting
Weight
50 ... 253 V AC, 9 VA

Environmental conditions Operating temperature Storage, transport

IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$
$4 \mathrm{~mm}^{2}$
DIN rail mounting
$\sim 450 \mathrm{~g}$

Electromagnetic compatibility
Product family standard
EN 61326-1
Emission
EN 55011, CISPR11 CI. B, Gr. 1
During an interference effect slight signal deviations are possible.
Electrical safety requirements
Product family standard EN 60688
Overvoltage category III
Pollution degree 2
Isolation-voltage
Test voltage input/output
500 V AC
Test voltage output/supply
5 kV RMS, 1 Min.

Block and wiring diagram

Dimensions

Circuit examples

3 Phasen, 4 Leiter, ungleiche Last 3 phases, 4 wire, unbalanced load

3 Phasen, 3 Leiter, ungleiche Last 3 phases, 3 wire, unbalanced load

Power Measurement Transducer

Description

Especially in power plant operations but also in many other switchgear areas, active power for the optimization and control of processes must be continuously measured. The power converter AD-LU 410 GA is always adapted to the individual case by means of plant-specific adaptations. The nominal voltage, the power to be measured and the desired output signal are required by the customer. The exact power values are available as standard signal for further processing.

Application

Measurement of the active power in switchgear, power plants, voltage distributions and transformation into an analog standard signal.

Specific characteristics

- Plug and play installation due to customer-specific production
- Fast response time due to analog multipliers
- Measurement of active power in 3- and 4-wire grids
- Measurement of symmetrical or asymmetrical load
- Measurement of active power fed back into the grid
- Analog output also bipolar possible
- Separate auxiliary voltage with wide range power supply

Business data

Order number

AD-LU 410 GA
Required customer data
Connection method
Nominal voltage
Voltage Transformers Current Transformers
Type of load
Measuring range
Output signal
Output range
Order Help

Input, Output customized

3-wire or 4-wire
Phase/Delta [V]
Primary/secondary voltage [V/V]
Primary/secondary current [A/A]
symmetric or unsymmetric load
Begin ... End [kW]
Current or voltage
Begin ... End [V, mA]
http://www.adamczewski.com/downlo ad/de/lu410hilfe.pdf

Power Measurement Transducer

Technical specifications

Electrical safety requirements

Overvoltage category
Measurement category
Pollution degree

Test voltage input/output
Testvoltage output/supply

Product standards

Product family standard EN 60688

Block and wiring diagram

Dimensions

Circuit examples

3 Phasen, 4 Leiter, ungleiche Last 3 phases, 4 wire, unbalanced load

3 Phasen, 3 Leiter, ungleiche Last 3 phases, 3 wire, unbalanced load

Description

The three-phase voltage monitor AD-UW 60 GT monitors all three phases in the three-phase system for overvoltage, undervoltage, phase sequence and phase symmetry. If one or more faults occur, the quiescent current relay will fail. The state of the three phases and the error state is indicated by LEDs. The device is powered by the measuring voltage, therefore the wiring of a separate supply is eliminated. The switching points for overvoltage, undervoltage and switching delay can be set quickly via separate trimmers.

Application

AC motors, Overhead cranes, Trolleys, Goods lifts, Conveyor belts

Specific characteristics

- Setting the limits for undervoltage, overvoltage and switching delay via the front panel
- Check all relevant sizes for a wide variety of purposes
- Display of the phase voltages by green LEDs
- Display of the relay by orange LED
- No separate power supply necessary therefore less wiring effort
- Relay is energized in the good range

Business data

Order number

AD-UW 60 GT

Technical specifications

Voltage inputs/supply

Nominal voltage
Connection method
Auxiliary voltage
Measurement and supply
range
Max. power consumption
Setting ranges
Undervoltage
Overvoltage
Delay

Response values

Asymmetry
Hysteresis
Phase loss

Timing

Start delay
Sampling period

Notifications

L1, L2, L3 (green)

Relais (orange)

Relay output

Maximum switching load AC
Maximum switching load DC
Contact construction
$230 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$
3 phases + neutral conductor
all three phases
150 ... 253 V AC
4 VA

170 ... 229 V AC
231 ... 250 V AC
$0,1 \ldots 10 \mathrm{~s}$
10% of nominal voltage
10% overvoltage - undervoltage
~ 10 \% der Nennspannung

1 s
50 ms
on: Voltage OK
Blinking: Error, Delay is running
Off: Error
On: Relay tightened, everything OK Blinking: Relay dropped, error

Galvanic isolation, test voltages
Mains side to relay output $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Housing

Terminals, wire cross section
Type of protection
Connection method
Bolting torque terminals
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport
Electrical safety requirements
Product family standard EN
Overvoltage category III
Pollution degree 2
Safety measurement
Measurement category
EMC
Product family standard EN 61326-1 ${ }^{11}$
Emitted interference
$250 \mathrm{~V}, 2 \mathrm{~A}$
$50 \mathrm{~V}, 2 \mathrm{~A}$
potential-free changeover
${ }^{1)}$ During checking, slight signal deviations are possible.
${ }^{2}$)Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio communications in such environments

Three-phase Voltage Monitor

Display and operating elements

Block and wiring diagram

Dimensions

Diagrams

Description

The AD-LW 110 GS monitors the load condition of inductive loads. The main application is asynchronous motors in the 1- or 3-phase network, the load of which is greatly changed. The device makes an evaluation of the cos-phi value and an undervoltage monitoring. Exceeding the set limit values triggers a contact. The switching states are indicated on the front side by LEDs. The measuring principle for the cos-phi is based on the evaluation of the phase shift between voltage and current in one phase. The actual measured variable is therefore the phase angle between voltage and current. The setting value of the cos-phi or of the phase angle is therefore only correct for sinusoidal quantities. The phase shift is almost inverse to the load. A cos-phi of $0\left(=90^{\circ}\right)$ thus corresponds to a low load while a cos-phi of $1\left(=0^{\circ}\right)$ corresponds to a large load. An external current transformer can be connected to the current input of the device. Thanks to the integrated, efficient switching power supply, operation is possible in a wide supply voltage range.

Application

Load monitoring of asynchronous machines, e.g. Pumps and drives.

Specific characteristics

- Connection of external current transformer possible
- Wide range power supply
- Limits can be set via potentiometer
- 2 potential-free normally open contacts
- LED display of the relay states

Business data
 Order number

AD-LW 110 GS

Technical specifications	
Current input (L1)	
Measuring range	0... 1/5 A AC (alternatively)
Permanent overload	50 \%
Short-term overload 3 s	100%
Voltage input (L1, L2, L3)	
Measuring range	180 ... 253 V
Input resistance	1 MOhm
Relay outputs	
Maximum switching load AC	$230 \mathrm{~V}, 1 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 1 \mathrm{~A}$
Contact construction	closing contact
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 1 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	600000
At 230V/1 A AC, $\cos (\mathrm{phi})=0,4$	200000
At $24 \mathrm{~V} / 1$ A DC	200000
Switching hysteresis	3% of the measuring range
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$4 \mathrm{VA} / 2,5 \mathrm{~W}$
Transmission behaviour	
Basic accuracy	<2\%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 50 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 120 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	1
Pollution degree	2
Galvanic isolation, test voltages	
Input / relay output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Power supply / relay output	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay 1 / relay 2	$2 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Power supply	electrical surge protection
${ }^{1 /}$ During checking, sight signal deviations are	possible.

Technical specifications

保

Measuring range
A AC (alternatively)
Permanent overload
50 \%
100 \%

Relay outputs

aximum switching load AC
1
$50 \mathrm{~V}, 1$ A
closing contact
10000000
mechanical
At $230 \mathrm{~V} / 1$ A AC, $\cos (\mathrm{phi})=1 \quad 600000$ Al2 VII A AC, cos(phi) 0,4

Switching hysteresis $\quad 3 \%$ of the measuring range
Supply
Voltage range AC
Voltage range DC
Nominal voltage DC
20 ... 253 V DC
24 V DC
4 VA / 2,5 W

ransmission behaviour

Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Terminals, wire cross section
Bolting torque terminals
$0,5 \mathrm{Nm}$
$\sim 120 \mathrm{~g}$
35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Product family standard Emitted interference

EN 55011, CISPR11 CI. B, Gr. 1
trical safety requirements

Galvanic isolation, test voltages

Protection circuits

Power supply electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Dimensions

Power Measurement

Split Core Current Transformer

Description

With the clamp on current transformers AD-KSW50, AD-KSW100, ADKSW200, AD-KSW400 and AD-KSW600 high currents can be measured without contact in connection with the power measurement devices from the Adamczewski GmbH . There are transformers for the range up to 600 A AC available. By their small size they can be easily mounted on the current carrying conductors and can therefore be mounted easily to existing systems without disconnecting the main cable. The secondary side mA-currents are not critical and can be wired over several meters. By the internal voltage limitation there are no high voltages on the secondary side possible.

Application

Measurement of high currents, power or energy in plants or buildings in connection with the measurement technology from the Adamczewski GmbH.

Specific characteristics

- non-contact measurement of high currents
- no disconnection of the main cable during installation
- uncritical mA-signals at the secondary side of the transformer

Business data

Order number

AD-KSW 50 SO
AD-KSW 100 SO
AD-KSW 200 SO
AD-KSW 400 SO
AD-KSW 600 SO

Power measurement transducer

AD-LU 25 GT

power measurement transducer

Compatible transducer

AD-LU 35 GT
AD-LU 55 GT
AD-LU 680 GA
50 A AC primary current 100 A AC primary current 200 A AC primary current 400 A AC primary current 600 A AC primary current power measurement transducer

Technical specifications

Max. primary conductor diameter

AD-KSW50	23 mm
AD-KSW100	23 mm
AD-KSW200	23 mm
AD-KSW400	35 mm
AD-KSW600	35 mm

Primary current
AD-KSW50
AD-KSW100
AD-KSW200
AD-KSW400
AD-KSW600

Secondary current

All transformer types
Nominal load
All transformer types $\quad 7$ Ohm
Dimension
AD-KSW50
AD-KSW100
AD-KSW200
AD-KSW400
AD-KSW600

Weight

AD-KSW50 ca. 180 g

AD-KSW100
AD-KSW200
AD-KSW400
AD-KSW600

Accuracy

All transformer types

Phase error

 All transformer types
Secundary wires

Connections
Cable length
Frequency range
All transformer types
Rated frequency
All transformer types
Isolation-voltage
All transformer types
Environmental conditions
Operation
Storage and transport

Certifications

All transformer types

0 ... 50 A AC
0 ... 100 A AC
0 ... 200 A AC
0 ... 400 A AC
0 ... 600 A AC

0 ... 33 mA AC
$34,4 \times 45 \times 65,5 \mathrm{~mm}$ $34,4 \times 45 \times 65,5 \mathrm{~mm}$ $34,4 \times 45 \times 65,5 \mathrm{~mm}$ $38,4 \times 57 \times 81,5 \mathrm{~mm}$ $38,4 \times 57 \times 81,5 \mathrm{~mm}$
ca. 180 g
ca. 180 g
ca. 180 g
ca. 350 g
ca. 350 g
$<0,5 \%$
1° (primary to secondary)
white: k , black: ।
ca. 50 cm

50 ... 400 Hz
$50 / 60 \mathrm{~Hz}$

2500 V AC (1 min) + cable insulation
$-10 \ldots 60^{\circ} \mathrm{C}$
$-20 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

CE, UL, RoHS

Power Measurement

Split Core Current Transformer

AD-KSW xx SO

Block and wiring diagram

Bitte Montagerichtung beachten
K: Netzseite / Quelle
L: Verbraucherseite / Last
Please note the mounting direction
K: network side / Source
L: consumer side / load

Dimensions

Power Measurement

Description

With the AD-HSH xxx WG it is possible to mount three Adamczewski split-core current transformers AD-KSW 50 WG, AD-KSW 100 WG or AD-KSW 200 WG together on the DIN rail. The output currents (max 33.33 mA) are provided via terminals. The AD-HSH-S is supplied fully assembled, therefore the size of the folding current transformer must be specified when ordering.

Application

Mounting of split-core current transformers on the DIN rail.

Business data
Order number
AD-HSH 50 WG;AD-HSH 100 WG;AD-HSH 200 WG

Technical specifications

Housing	
Dimensions (WxHxD)	134,9x77x91 mm
Type of protection	IP 20
Connection method	spring clamp terminals
Terminals, wire cross section	$1,5 \mathrm{~mm}^{2}$ flex wire / $2,5 \mathrm{~mm}^{2}$ one wire
Weight	$\sim 520 \mathrm{~g}$ (incl. split-core transformers)
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 60^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Elevation	max. 2000 m
Safety measurement	61010-2-030
Measurement category	CAT III
Max. permanent working voltage	300 VAC
Galvanic isolation, test voltages	
Input / output	2500 V AC (1 min) + cable insulation
Protection circuits	
Output	internal voltage limitation with open secondary lines

${ }^{1)}$ During checking, slight signal deviations are possible.

Dimensions

Fieldbus Devices

Analog-Output-Bus-Converter

Description

The AD-AAB 20 GX provides 2-channel output of analog signals. The device communication is realized using the MODBUS RTU protocol. The analog setpoints can be set via implemented MODBUS commands.
The power supply and the RS485 bus connection are possible via the rear DIN rail connector. The device is equipped with two rotary coding switches with which the bus address can be set on the device.
The operating voltage is indicated by a green LED. The data communication is signaled with a yellow LED. An optical search function allows the localization of a single device in a network. For this purpose, the green LED is set in a time-limited flashing mode, between 1 and 255 seconds.
As well as interface settings as well as the device address can be modified during operation by means of Modbus commands. All Modbus register addresses and associated commands are listed in the document attachment.

Application

Specification of analog process signals for control purposes.

Specific characteristics

- Two analogue outputs can be used as voltage or current input
- Galvanically isolated RS485 bus interface
- Parameterizable interface settings
- Hardware switch for device address
- Galvanically isolated switching power supply
- Can be parameterized with PC via AD Studio configuration software
- Status LED for operating voltage and data communication
- Optical search function
- Modbus master mode

Business data

Order number

Accessory

Rail connector
(5-pin)

AD-AAB 20 GX

Artnr: AD-GX-Connector Zur Durchschleifung von Versorgungsspannung und RS485-Bus
Aufrastbar auf Tragschiene (DIN EN 50022).

Technical specifications

Current outputs	
Range	$0 \ldots 20 \mathrm{~mA}$
Output load	max. 450 Ohm
Voltage outputs	
Range	$0 . .10 \mathrm{~V}$
Output load	min. 10 kOhm
Signal output	
Channel counts (U/I)	2
Basic accuracy	< +/- 0,3 \%
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Resolution	12 bit
Transmission behaviour	
Response time	max. 15 ms
RS485-Bus	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Max. bus users	99
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no spur lines)
Cable	twisted and shielded
Supply	
Supply voltage	$18 . .30 \mathrm{~V}$ DC
Max. power consumption	1400 mW (24V DC)
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail mounting 35mm, EN 50022
Type of protection	IP 20
Connection method	screw clamp
Bolting torque terminals	0,5 Nm
Wire cross section	max. $2,5 \mathrm{~mm}^{2}$
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Permissible ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{1)}$	EN 61326-1
Emission ${ }^{2)}$ ${ }^{1)}$ During checking, slight signal deviation	EN 55011, CISPR11 CI. A, Gr. 1 possible.
${ }^{2)}$ Warning: This device is not intended to be used in radio reception in such environments.	ential areas and can not ensure adequate protection of

Fieldbus Devices

Analog-Output-Bus-Converter

Technical specifications

Electrical safety requirements

Product family standard EN 61010-1

Galvanic isolation, test voltages

RS485 bus / power supply $\quad 1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Analog output / power supply $1.5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min)
Analog output / RS485 bus $\quad 1,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min)
Analog outputs between $\quad 0,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min)
themselves

Protection circuits

Power supply electrical surge and reverse current protection

Display and operating elements

Block and wiring diagram

Dimensions

Analog-Output-Bus-Converter

Modbus Communication

The AD-AAB 20 GX contains a RS485 bus interface on which the Modbus RTU protocol is used. All control functions of the device can be executed via this bus interface. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address (1...99) is set to the side-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device is accessible only via the standard data format (19200, e, 8.1). The position 0 thus represents a service position, the example can be used during parameterization error.

The AD-AAB 20 GX supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Holding Registers" (0×10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free and can be downloaded from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40501	1	Address switch	U16	1...99...247	yes	yes
40502	1	Flashing function	U16	0/1... 255	yes	yes
40901	2	Analog output U1	FLOAT	0...10V	no	yes
40903	2	Analog output I1	FLOAT	0...20mA	no	yes
40905	2	Analog output U2	FLOAT	0...10V	no	yes
40907	2	Analog output I2	FLOAT	0...20mA	no	yes
40909	2	Scale out U1	FLOAT	+/- Scale value	no	yes
40911	2	Scale out I1	FLOAT	+/- Scale value	no	yes
40913	2	Scale out U2	FLOAT	+/- Scale value	no	yes
40915	2	Scale out I2	FLOAT	+/- Scale value	no	yes
44201	2	Scale begin Channel 1	FLOAT	+/- Scale range	yes	yes
44203	2	Scale begin Channel 2	FLOAT	+/- Scale range	yes	yes
44205	2	Analog begin Channel 1	FLOAT	0... 100 \%	yes	yes
44207	2	Analog begin Channel 2	FLOAT	0... 100 \%	yes	yes
44211	2	Scale end Channel 1	FLOAT	+/- Scale range	yes	yes
44213	2	Scale end Channel 2	FLOAT	+/- Scale range	yes	yes
44215	2	Analog end Channel 1	FLOAT	0... 100 \%	yes	yes
44217	2	Analog end Channel 2	FLOAT	0... 100 \%	yes	yes
42901	1	Baud rate	U16	Index, see list below	yes	yes
42902	1	Parity	U16	[0]=even; [1]=odd; [2]=no	yes	yes
42903	1	Modbus Master	U16	0/1	yes	yes
49102	1	Device reset	U16	0	no	yes
49105	6	Device type	String	AAB20GX	yes	no
49119	1	Firmware version	U16	MSB/LSB	yes	no

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9
baud	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

After changing the interface parameters, a device reset is required.

Modbus master mode

The device can even work in Modbus master mode to transfer data between any devices within an RS485 line. For Modbus master operation, starting with Modbus register 40611, there are 37 consecutive data transfer sets, with 5 configuration registers each.

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40611	1	Source address [1]	U16	1...98	ja	ja
40612	1	Source register [1]	U16	nnnnn	ja	ja
40613	1	Target address [1]	U16	1... 99	ja	ja
40614	1	Target register [1]	U16	nnnnn	ja	ja
40615	1	Register count [1]	U16	1/2	ja	ja
40791	1	Source address [37]	U16	1... 98	ja	ja
40792	1	Source register [37]	U16	nnnnn	ja	ja
40793	1	Target address [37]	U16	1... 99	ja	ja
40794	1	Target register [37]	U16	nnnnn	ja	ja
40795	1	Register count [37]	U16	1/2	ja	ja

For the Modbus master mode, the parameter "Modbus master" must be activated and the address switch set to position 99.
Data transfer begins six seconds after activation or device restart.
A flashing green LED indicates a communication error.

Fieldbus Devices

Analog-Input-Bus-Converter

Description

The AD-AEB 20 GX enables 2 -channel analog signal acquisition while providing digitally processed process variables. The signals are provided via an RS485 bus interface. Analog values ??and scaling values ??can be called up via implemented MODBUS commands. All settings regarding scaling or filters are made via MODBUS commands.
The power supply and the RS485 bus connection are possible via the rear DIN rail connector. The device is equipped with two rotary coding switches with which the bus address can be set on the device.
The input current shunt is automatically switched on when reading the current value. With the input signal switches (E1/E2), each signal input can be permanently connected to the 50 Ohm terminating resistor in order to safely complete current loops even if the supply voltage fails.
The operating voltage is indicated by a green LED. The data communication is signaled by a yellow LED. Invalid measurement signals outside the defined measuring range are detected. In this case, the green LED flashes.
As well as interface settings as well as the device address can be modified during operation by means of Modbus commands. All Modbus register addresses and associated commands are listed in the document attachment.

Application

Conversion of analog process variables in digital information, already in the cabinet. Drastic reduction of wiring work.

Specific characteristics

- Two analogue inputs can be used as voltage or current input
- Adjustable filter function
- Galvanically isolated RS485 bus interface
- Parameterizable interface settings
- Hardware switch for device address
- Galvanically isolated switching power supply
- Can be parameterized with PC via AD Studio configuration software
- Status LED for operating voltage and data communication
- Visual display for invalid measuring signals
- Modbus master mode

Fieldbus Devices

Analog-Input-Bus-Converter

Technical specifications

Electrical safety requirements

Product family standard EN 61010-1

Galvanic isolation, test voltages

RS485 bus / power supply $\quad 1,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min)
Analog inputs / power supply $1.5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min)
Analog input / RS485 bus $\quad 1,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min)
Analog inputs between 0 kV
themselves

Protection circuits

Power supply electrical surge and reverse current protection

Display and operating elements

Block and wiring diagram

Designation	LED	Meaning
On	green	Power supply
D	yellow	RS485 Communication
RS485		Address switch(01...99)
E1	Input signal switch (U/I) channel 1	
E2	Input signal switch (U/I) channel 2	

Dimensions

Analog-Input-Bus-Converter

Modbus Communication

The AD-AEB 20 GX contains a RS485 bus interface on which the Modbus RTU protocol is used. All control functions of the device can be executed via this bus interface. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address (1...99) is set to the side-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device is accessible only via the standard data format (19200, e, 8.1). The position 0 thus represents a service position (slaveaddress $=0$), the example can be used during parameterization error.

The AD-AEB 20 GX supports two Modbus functions. These are the functions "Read Holding Registers" (0×03) and "Write Holding Registers" (0×10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free and can be downloaded from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40501	1	Address switch	U16	1...99...247	yes	yes
40502	1	Flashing function	U16	0/1... 255	yes	yes
42905	1	Signal input type 1	U16	$\mathrm{U}=0 / \mathrm{l}=1$	yes	yes
42906	1	Signal input type 2	U16	$\mathrm{U}=0 / \mathrm{l}=1$	yes	yes
40211	1	Damping U/I 1	U16	0... 1000 s	yes	yes
40212	1	Damping U/I 2	U16	0... 1000 s	yes	yes
43001	2	In signal begin U/I 1	FLOAT	V / mA	yes	yes
43003	2	In signal end U/I 1	FLOAT	V / mA	yes	yes
43005	2	Scale begin 1	FLOAT	-99999 ...	yes	yes
43007	2	Scale end 1	FLOAT	... 99999	yes	yes
43009	2	In signal begin U/I 2	FLOAT	V / mA	yes	yes
43011	2	In signal end U/I 2	FLOAT	V / mA	yes	yes
43013	2	Scale begin 2	FLOAT	-99999 ...	yes	yes
43015	2	Scale end 2	FLOAT	... 99999	yes	yes
40901	2	Analog intput U1	FLOAT	0...10V	yes	no
40903	2	Analog intput I1	FLOAT	0...20mA	yes	no
40905	2	Analog intput U2	FLOAT	0...10V	yes	no
40907	2	Analog intput I2	FLOAT	0...20mA	yes	no
40909	2	Scaled value 1	FLOAT	Begin ... End	yes	no
40911	2	Scaled value 2	FLOAT	Begin ... End	yes	no
42901	1	Baud rate	U16	Index, see list below	yes	yes
42902	1	Parity	U16	[0]=even; [1]=odd; [2]=no	yes	yes
42903	1	Modbus Master	U16	0/1	yes	yes
49102	1	Device reset	U16	0	no	yes
49105	6	Device type	String	AEB20GX	yes	no
49119	1	Firmware version	U16	MSB/LSB	yes	no

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9
baud	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

After changing the interface parameters, a device reset is required.

Modbus master mode

The device can even work in Modbus master mode to transfer data between any devices within an RS485 line. For Modbus master operation, starting with Modbus register 40611, there are 38 consecutive data transfer sets, with 5 configuration registers each.

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40611	1	Source address [1]	U16	$1 \ldots 99$	yes	yes
40612	1	Source register [1]	U16	nnnn	yes	yes
40613	1	Target address [1]	U16	$1 \ldots 98$	yes	yes
40614	1	Target register [1]	U16	nnnnn	yes	yes
40615	1	Register count [1]	U16	$1 / 2$	yes	yes
40796	1	Source address [38]	U16	$1 \ldots 99$	yes	yes
40797	1	Source register [38]	U16	nnnnn	yes	yes
40798	1	Target address [38]	U16	$1 \ldots 98$	yes	yes
40799	1	Target register [38]	U16	nnnnn	yes	yes
40800	1	Register count [38]	U16	$1 / 2$	yes	yes

For the Modbus master mode, the parameter "Modbus master" must be activated and the address switch set to position 99.
Data transfer begins six seconds after activation or device restart.
A flashing green LED indicates a communication error.

Fieldbus Devices

Analog Bus Converter

Description

The AD AEB 40 GT enables a 4-channel analog signal acquisition while providing digitally processed process variables. The signals are provided via an RS485 bus interface available. Analog values and scaling values are available via implemented MODBUS commands. All settings for scaling or filter are carried out via MODBUS commands.
The operating voltage is indicated by a green LED. The data communication is signaled by a yellow LED. Invalid measurement signals outside the defined measuring range are detected. In this case, the green LED flashes.

Application

Conversion of analog process variables in digital information already in the cabinet. Drastic reduction of wiring work.

Specific characteristics

- Four analog inputs can be used as voltage or current input.
- Adjustable filter functions.
- Electrically isolated RS485 bus interface.
- Configurable interface settings.
- Front-setting the device address.
- Electrically isolated wide range power supply.
- Programmable with PC via AD-Studio configuration software.
- Double RS485 BUS connection for wire loop through.
- Status LED for operating voltage and data communication.
- Visual indication of an invalid measurement signals.

Business data

Order number
AD-AEB 40 GT

Technical specifications	
Current inputs	
Measuring range	0... 20 mA
Input resistance	50 Ohm
Voltage inputs	
Measuring range	$0 . .10 \mathrm{~V}$
Input resistance	100 kOhm
Signal detection	
Channel counts (U/I)	4
Basic accuracy	< 0,2 \%
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Sampling rate / resolution	$100 \mathrm{~ms} / 11$ bit
RS485-Bus	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Max. bus users	99
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Power consumption	max. 1,5 VA
Voltage range DC	$20 . .253 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Power consumption	max. 0,5 W
Housing	
Dimensions (WxHxD)	$71 \times 90 \times 58 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,6 Nm
Skinning length	6 mm
Weight	$\sim 140 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{11}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Grid side to RS485-Bus	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / RS485 bus	$1 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
RS485-Bus	electrical surge protection
Power supply	electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.	

Technical specifications

Measuring range $0 \ldots 20 \mathrm{~mA}$
Input resistance
Voltage inputs

Channel counts (U/I)
Basic accuracy
Temperature influence
Sampling rate / resolution
100 ms / 11 bit

Modbus-RTU
19200, e, 8, 1
99

500 m (no stubs)
twisted and shielded

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
230 V AC
max. $1,5 \mathrm{VA}$
.. 253 V DC
max 0,5
$71 \times 90 \times 58 \mathrm{~mm}$
IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
0,6 Nm
$\sim 140 \mathrm{~g}$
35 mm DIN rail 35 mm
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{1)}$
EN 55011, CISPR11 CI. B, Gr. 1

EN 61010-1
II
Pollution degree 2
Galvanic isolation, test voltages
Grid side to RS485-Bus $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / RS485 bus
electrical surge protection electrical surge protection electrical surge protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Fieldbus Devices

Analog Bus Converter

Block and wiring diagram

Dimensions

Analog Bus Converter

Modbus Communication

The AD-AEB 40 GT has an RS485 bus interface on which the Modbus RTU protocol is used. About this bus interface all measured data of the device can be read. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address is set to the front-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device only via the standard data format (19200, e, 8.1) accessible. The position 0 thus represents a service position, the example can be used during parameterization error.

The AD-AEB 40 GT supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Holding Registers" (0x10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free, but can also be purchased from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Unit	Datatype	[Code] = Value	read	write
Observations:							
40101	2	analog input channel 1	mA or V	float	0...20mA / 0...10V	yes	no
40103	2	analog input channel 2	mA or V	float	0...20mA / 0...10V	yes	no
40105	2	analog input channel 3	mA or V	float	0...20mA / 0...10V	yes	no
40107	2	analog input channel 4	mA or V	float	0...20mA / 0...10V	yes	no
40801	2	scaled value channel 1	scale unit	float	scaled value	yes	no
40803	2	scaled value channel 2	scale unit	float	scaled value	yes	no
40805	2	scaled value channel 3	scale unit	float	scaled value	yes	no
40807	2	scaled value channel 4	scale unit	float	scaled value	yes	no

Parameters:							
43073	1	signal selection channel 1	I or U	U08	$[0]=1(20 \mathrm{~mA}) ;[1]=\mathrm{U}(10 \mathrm{~V})$	yes	yes
43074	1	signal selection channel 2	I or U	U08	$[0]=I(20 \mathrm{~mA}) ;[1]=\mathrm{U}(10 \mathrm{~V})$	yes	yes
43075	1	signal selection channel 3	I or U	U08	[0] = I (20mA); [1] = U (10V)	yes	yes
43076	1	signal selection channel 4	I or U	U08	$[0]=1(20 \mathrm{~mA}) ;[1]=\mathrm{U}(10 \mathrm{~V})$	yes	yes
43001	2	range begin channel 1	mA or V	float	0...10mA / 0...5V	yes	yes
43003	2	range begin channel 2	mA or V	float	0...10mA / 0... 5 V	yes	yes
43005	2	range begin channel 3	mA or V	float	0...20mA / 0...5V	yes	yes
43007	2	range begin channel 4	mA or V	float	0...20mA / 0...5V	yes	yes
43033	2	range end channel 1	mA or V	float	10...20mA / 5...10V	yes	yes
43035	2	range end channel 2	mA or V	float	10...20mA / 5...10V	yes	yes
43037	2	range end channel 3	mA or V	float	10...20mA / 5...10V	yes	yes
43039	2	range end channel 4	mA or V	float	10...20mA / 5...10V	yes	yes
43065	1	filter value channel 1	seconds	U16	0... 1000	yes	yes
43066	1	filter value channel 2	seconds	U16	0... 1000	yes	yes
43067	1	filter value channel 3	seconds	U16	0... 1000	yes	yes
43068	1	filter value channel 4	seconds	U16	0... 1000	yes	yes
43017	2	scale begin channel 1	scale unit	float		yes	yes
43019	2	scale begin channel 2	scale unit	float		yes	yes
43021	2	scale begin channel 3	scale unit	float		yes	yes
43023	2	scale begin channel 4	scale unit	float		yes	yes
43049	2	scale end channel 1	scale unit	float		yes	yes
43051	2	scale end channel 2	scale unit	float		yes	yes
43053	2	scale end channel 3	scale unit	float		yes	yes
43055	2	scale end channel 4	scale unit	float		yes	yes
43132	6	scale unit channel 1	max. 6 character	string		yes	yes
43138	6	scale unit channel 2	max. 6 character	string		yes	yes
43144	6	scale unit channel 3	max. 6 character	string		yes	yes
43150	6	scale unit channel 4	max. 6 character	string		yes	yes
43084	6	measuring point channel 1	6 character	string		yes	yes
43090	6	measuring point channel 2	6 character	string		yes	yes
43096	6	measuring point channel 3	6 character	string		yes	yes
43102	6	measuring point channel 4	6 character	string		yes	yes
43081	1	baud rate	baud	U16	see list below	yes	yes
43082	1	parity		U16	[0]=even; [1]=odd; [2]=no	yes	yes
43083	1	stopbit		U16	$[0]=1 ;[1]=2$	yes	yes

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
baudrate	50	110	300	600	1200	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

Fieldbus Devices

Digital-Input-Bus-Converter

Description

The two-channel AD-KEB 20 GX is used to read in digital signals that are present as a contact or active 24 V signal. The respective signal state is indicated on the device by means of a red LED. Device communication takes place via the RS485 bus interface and is implemented using the MODBUS RTU protocol.
The power supply and the RS485 bus connection are possible via the rear DIN rail connector. The device is equipped with two rotary coding switches with which the bus address can be set on the device.
An optical search function allows the localization of a single device in a network. For this purpose, the green LED is set in a time-limited flashing mode, between 1 and 255 seconds.
Interface settings as well as the device address can be modified during operation by means of Modbus commands.
All Modbus register addresses and associated commands are listed in the document attachment. The presettable absolute counters continuously add incoming pulses and are saved in a non-volatile memory every hour. The current counters are reset during readout to detect subsets.

Application

Reading in digital signals in general electrical engineering, automation technology and in the water / wastewater sector.
For example: pulse counting with presettable counters or frequency measurement.

Specific characteristics

- RS485 bus / Modbus RTU protocol
- Rotary coding switch for bus address setting
- Counter function
- Frequency measurement
- Switching Power Supply
- Optical search function

Business data

Order number

Accessory

Rail connector
(5 -pin)

AD-KEB 20 GX
Artnr: AD-GX-Connector
Zur Durchschleifung von Versorgungsspannung und RS485-Bus
Aufrastbar auf Tragschiene
(DIN EN 50022).

Technical specifications

Input	
Input voltage	24 V DC / 3,5 mA (max. 30V)
Switching threshold	$\sim 17 \mathrm{~V}$
Contact load	$5 \mathrm{~V} / 1,5 \mathrm{~mA}$
Measure	
Frequency	< 2200 Hz
Gate time	1 s
Accuracy	+/-0,3\%
Counter	0...4294967295
Pulse width (counter)	$>25 \mathrm{~ms}$
Counting frequency	$<20 \mathrm{~Hz}$
Contact debouncing	20 ms
Counter storage	stündlich
Transmission behaviour	
Response time	max. 15 ms
RS485-Bus	
Software protocol	Modbus-RTU
Data format	19200, e, 8, 1
Max. bus users	99
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no spur lines)
Cable	twisted and shielded
Supply	
Supply voltage	18 ... 30 V DC
Max. power consumption	800 mW (24V DC)
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail mounting 35mm, EN 50022
Type of protection	IP 20
Connection method	screw clamp
Bolting torque terminals	0,5 Nm
Wire cross section	max. $2,5 \mathrm{~mm}^{2}$
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Permissible ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{1)}$	EN 61326-1
Emission ${ }^{2)}$ ${ }^{1)}$ During checking, slight signal deviation	EN 55011, CISPR11 CI. A, Gr. 1 possible.
${ }^{2}$) Warning: This device is not intended to be used in radio reception in such environments.	ential areas and can not ensure adequate protection of

Fieldbus Devices
Digital-Input-Bus-Converter

Technical specifications

Electrical safety requirements

Product family standard EN 61010-1

Galvanic isolation, test voltages

RS485 bus / power supply	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Digital input / Power supply	$1.5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Digital input / RS485 bus	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Digital input between	0 kV

between 0 kV
themselves
Protection circuits
RS485-Bus electrical surge protection
Power supply electrical surge and reverse current protection

Display and operating elements

Designation	LED	Meaning
On	green	Power supply
E1	red	Input 1 state
E2	red	Input 2 state
D	yellow	RS485 Communication
RS485		Address switch(01...99)

Block and wiring diagram

Dimensions

Modbus Communication

The AD-KEB 20 GX contains a RS485 bus interface on which the Modbus RTU protocol is used. All control functions of the device can be executed via this bus interface. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address (1...99) is set to the side-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device is accessible only via the standard data format (19200, e, 8.1). The position 0 thus represents a service position, the example can be used during parameterization error.

The AD-KEB 20 GX supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Holding Registers" (0×10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free and can be downloaded from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40501	1	Address switch	U16	1...99... 247	yes	yes
40502	1	Flashing function	U16	0/1... 255	yes	yes
40503	1	24V Input 1	U16	0/1	yes	no
40504	1	24V Input 2	U16	0/1	yes	no
40505	1	Input contact 1	U16	0/1	yes	no
40506	1	Input contact 2	U16	0/1	yes	no
40551	2	Input frequency 1	FLOAT	0,00...2200 Hz	yes	no
40553	2	Input frequency 2	FLOAT	0,00...2200 Hz	yes	no
42901	1	Baud rate	U16	Index, see list below	yes	yes
42902	1	Parity	U16	[0]=even; [1]=odd; [2]=no	yes	yes
42903	1	Input signal type 1	U16	[0]=aktiv; [1]=Contact	yes	yes
42904	1	Input signal type 2	U16	[0]=aktiv; [1]=Contact	yes	yes
43001	1	Debouncing 1	U16	$\times 20 \mathrm{~ms}$	yes	yes
43002	1	Debouncing 2	U16	$\times 20 \mathrm{~ms}$	yes	yes
47209	2	Absolutely counter 1	U32	0...4294967295	yes	yes
47211	2	Absolutely counter 2	U32	0...4294967295	yes	yes
47213	2	Currently counter 1	U32	0...4294967295	yes	no
47215	2	Currently counter 2	U32	0...4294967295	yes	no
49102	1	Device reset	U16	0	no	yes
49105	6	Device type	String	KEB20GX	yes	no
49119	1	Firmware version	U16	MSB/LSB	yes	no

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9
baud	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

After changing the interface parameters, a device reset is required.

Modbus master mode

The device can even work in Modbus master mode to transfer data between any devices within an RS485 line.
For Modbus master operation, starting with Modbus register 40611, there are 48 consecutive data transfer sets,
with 5 configuration registers each.

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40611	1	Source address [1]	U16	$1 \ldots 99$	yes	yes
40612	1	Source register [1]	U16	nnnnn	yes	yes
40613	1	Target address [1]	U16	$1 \ldots 98$	yes	yes
40614	1	Target register [1]	U16	nnnnn	yes	yes
40615	1	Register count [1]	U16	$1 / 2$	yes	yes
40846	1	Source address [48]	U16	$1 \ldots .99$	yes	yes
40847	1	Source register [48]	U16	nnnnn	yes	yes
40848	1	Target address [48]	U16	$1 \ldots 98$	yes	yes
40849	1	Target register [48]	U16	nnnnn	yes	yes
40850	1	Register count [48]	U16	$1 / 2$	yes	yes

For the Modbus master mode, the parameter "Modbus master" must be activated and the address switch set to position 99.
Data transfer begins six seconds after activation or device restart.
A flashing green LED indicates a communication error.

Description

The AD-KAB10 GX provides a remote controllable relay switching contact (changeover contact). Remote control is via the RS-485 bus interface. The device communication is realized using the MODBUS RTU protocol.
The power supply and the RS485 bus connection is possible via the rear DIN rail connector. The device is equipped with two rotary coding switches with which the bus address can be set on the device.
The static contact control is carried out with a control value 0 or 1 .
A pulse output function (with 1 Hz) is triggered with a control value of 1 to 255 and can be modified or stopped at any time with other values. An optical search function allows the localization of a single device in a device network when in a cabinet several devices are on a top hat rail. For this purpose, the green LED is set in a time-limited flashing mode, between 1 and 255 seconds.
For the relay, a defined start state can be set so that when the supply voltage returns after a power failure, a system can assume the desired start state.
The interface settings as well as the device address can be modified during operation by means of Modbus commands. All Modbus register addresses and associated commands are listed in the document attachment.

Application

Remote control of consumers such as valves or motors in building automation and automation technology.

Specific characteristics

- RS485 bus / Modbus RTU protocol
- Rotary coding switch for bus address setting
- Presettable contact start state
- Potential-free contact (changer)
- Switching Power Supply
- Pulse and toggle output function
- Pulse summation $(1 / 1000+1 / 100+1 / 10+1)$
- Optical search function, Modbus master mode

Technical specifications

Relay

$$
\text { Maximum switching load AC } 250 \mathrm{~V}, 2 \mathrm{~A}
$$

Maximum switching load DC
Contact construction
Switching operations
mechanical
At $230 \mathrm{~V} / 2 \mathrm{~A} A C, \cos (\mathrm{phi})=1 \quad 500000$
At $24 \mathrm{~V} / 1$ A DC
Transmission behaviour
Response time

RS485-Bus

Software protocol
Data format
Max. bus users
Bus termination
Max. length of bus
Cable

Supply

Supply voltage
Max. power consumption
Housing
Dimensions (WxHxD)
Manner of fastening
Type of protection
Connection method
Bolting torque terminals
Wire cross section
Weight

Environmental conditions

Permissible ambient
temperature
Storage and transport

EMC

Product family standard ${ }^{1)}$
Emission ${ }^{2)}$
$50 \mathrm{~V}, 2 \mathrm{~A}$
changeover contact
10000000

1000000
max. 15 ms

Modbus-RTU
19200, e, 8, 1
99
120 ohms both sides at the end
500 m (no spur lines)
twisted and shielded

18 ... 30 V DC
700 mW (24V DC)
$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
DIN rail mounting 35 mm , EN 50022
IP 20
screw clamp
$0,5 \mathrm{Nm}$
max. $2,5 \mathrm{~mm}^{2}$
$\sim 70 \mathrm{~g}$
$-10 \ldots+50^{\circ} \mathrm{C}$
$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. A, Gr. 1
${ }^{1)}$ During checking, slight signal deviations are possible.
${ }^{2)}$ Warning:
This device is not intended to be used in residential areas and can not ensure adequate protection of radio reception in such environments.

Electrical safety requirements
Product family standard EN 61010-1

Galvanic isolation, test voltages

RS485 bus / power supply	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Relay contact	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$

Protection circuits
RS485-Bus
electrical surge protection
electrical surge and reverse current protection

Business data

Fieldbus Devices
RS485-Relay Module

Block and wiring diagram

Designation	LED	Meaning
On	green	Power supply
R	red	Relay state
D	yellow	RS485 Communication
RS485		Address switch(01...99)

Dimensions

Modbus Communication

The AD-KAB 10 GX has an RS485 bus interface on which the Modbus RTU protocol is used. All control functions of the device can be executed via this bus interface. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address (1...99) is set to the side-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device only via the standard data format (19200, e, 8.1) accessible. The position 0 thus represents a service position, the example can be used during parameterization error.

The AD-KAB 10 GX supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Holding Registers" (0x10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free, but can also be purchased from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40401	2	Pulse summation / 1	U32	0...4294967295	yes	yes
40403	2	Pulse summation / 10	U32	0...4294967295	yes	yes
40405	2	Pulse summation / 100	U32	0...4294967295	yes	yes
40407	2	Pulse summation / 1000	U32	0...4294967295	yes	yes
40501	1	Address switch	U16	1...99... 247	yes	yes
40502	1	Output contact	U16	0/1... 255	yes	yes
40503	1	Pulse output	U16	1... 255	yes	yes
40504	1	Toggle relay	U16	0/1	yes	yes
40505	1	Flashing function	U16	0/1... 255	yes	yes
40901	2	Scaling value	float	float	no	yes
44201	2	OFF limit	float	float	yes	yes
44211	2	ON limit	float	float	yes	yes
47215	2	Switching cycles	U32	0...	yes	no
49102	1	Device reset	U16	0	no	yes
49105	6	Device type	String	KAB10GX	yes	no
49119	1	Firmware version	U16	MSB/LSB	yes	no
42901	1	Baud rate	U16	index, see list below	yes	yes
42902	1	Parity	U16	[0]=even; [1]=odd; [2]=no	yes	yes
42903	1	Modbus Master	U16	0/1	yes	yes
42904	1	Relay start up state	U16	0/1	yes	yes

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9
baud	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

After changing the interface parameters, a device reset is required.

Modbus master mode

The device can even work in Modbus master mode to transfer data between any devices within an RS485 line. For Modbus master operation, starting with Modbus register 40611, there are 48 consecutive data transfer sets, with 5 configuration registers each.

Start address	Reg. number	Name	Datatype	[Code] = Value	read	write
40611	1	Source addres [1]	U16	$1 \ldots 98$	yes	yes
40612	1	Source register [1]	U16	nnnnn	yes	yes
40613	1	Target address [1]	U16	$1 \ldots 99$	yes	yes
40614	1	Target register [1]	U16	nnnnn	yes	yes
40615	1	Register count [1]	U16	$1 / 2$	yes	yes
40846	1	Source address [48]	U16	$1 \ldots 98$	yes	yes
40847	1	Source register [48]	U16	nnnnn	yes	yes
40848	1	Target address [48]	U16	$1 \ldots 99$	yes	yes
40849	1	Target register [48]	U16	nnnnn	yes	yes
40850	1	Register count [48]	U16	$1 / 2$	yes	yes

For the Modbus master mode, the parameter "Modbus master" must be activated and the address switch set to position 99.
Data transfer begins six seconds after activation or device restart.
A flashing green LED indicates a communication error.

Description

With the RS 485 relay modules AD-KAB 40 GT and AD-KAB 80 GT, 4 or 8 potential-free NO contacts can be controlled from a distance via RS485 bus. The used Modbus-RTU protocol on these devices on the RS485 bus is an open standard and therefore extremely flexible. The up to eight relays can be individually controlled via a separate Modbus register. The devices are equipped with two rotary coding switches, which can be used to set the bus address on the device. If the DIP switch is active (in manual operation) bus commands for the respective relay are ignored because the manual operation has priority. Due to the compact and efficient switching power supply, the devices can be operated in a wide supply voltage range.

Application

Remote control of loads such as valves or motors in building automation as well as in automation technology.
Attention: A mixed wiring of the relays of extra low voltage and grid voltage is only permitted to a limited extent. For example, care must be taken that relays with 24 V and 230 V signals are not adjacent.

Specific characteristics

- RS485-Bus
- Modbus-RTU protocol
- rotary coding switch for setting the bus address
- DIP switch for manual relay operation
- 4 or 8 potential free relays
- wide range power supply

Business data

Article number

AD-KAB 40 GT
AD-KAB 80 GT

Accessory

USB/RS485 converter

RS485 Relaismodul mit 4 Relais RS485 Relaismodul mit 8 Relais

AD-VarioPass3

Technical specifications

RS485-Bus

Software protocol Modbus-RTU

Data format (default setting)
Max. bus users Bus termination
Max. length of bus Cable

Modbus-RTU
19200, e, 8, 1
99
120 ohms both sides at the end
500 m (no spur lines)
twisted and shielded

Relay

Maximum switching load AC
Maximum switching load DC
Contact construction
Switching operations mechanical

At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos ($ phi $)=1$	600000
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos ($ phi $)=0,4$	200000
At $24 \mathrm{~V} / 1$ A DC	200000

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC
$250 \mathrm{~V}, 2 \mathrm{~A}$
$50 \mathrm{~V}, 2 \mathrm{~A}$
closing contact
10000000

Transmission behaviour

Response time
max. 5 ms

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
$71 \times 90 \times 58 \mathrm{~mm}$
IP 20
detachable terminal clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
$0,5 \mathrm{Nm}$
$\sim 200 \mathrm{~g}$
35 mm DIN rail 35 mm
$-10 \ldots 60^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages

Power supply / RS485-Bus	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Power supply / relay output	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Relay output / RS $485-$-Bus	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.

Protection circuits

RS485-Bus
electrical surge protection
Power supply
electrical surge and reverse current protection
${ }^{1)}$ During checking, slight signal deviations are possible.

Fieldbus Devices

Block and wiring diagram

Dimensions

The bus address is set at the front-mounted rotary coding switches. Address 0 is not allowed for bus operation. However, at this zero position the device can always be reached via the standard data format (19200, e, 8.1). Position 0 thus represents a service position, which can be used with incorrect parameterization.

The AD-KAB 40/80 GT supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Multiple Registers" (0×10) . The function "Read Holding Registers" data can be read from the device and data is written with "Write Multiple Registers". The individual register width is 16 bits.
Please refer to the Modbus specification for a detailed description of the Modbus communication. This is freely available online, but can also be obtained from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:
Each relay can be read or written (0 or 1) via its assigned register (DOUT_RELAIS_x). But it is also possible to manipulate or read out all relays with the register DOUT_RELAIS_COMPLETE. For AD-KAB 80 GT corresponds bit 0 of the word to relay 1 and bit 7 to the relay 8 . With the ADKAB 40 GT corresponding to relay 4.

start address	register number	name	unit	data type	read	write
relay control:						
40501	1	DOUT_RELAY_1		3	1	1
40502	1	DOUT_RELAY_2		3	1	1
40503	1	DOUT_RELAY 3		3	1	1
40504	1	DOUT_RELAY 4		3	1	1
40505	1	DOUT_RELAY_5		3	1	1
40506	1	DOUT_RELAY_6		3	1	1
40507	1	DOUT_RELAY 7		3	1	1
40508	1	DOUT_RELAY_8		3	1	1
40601	1	DOUT_RELAY_COMPLETE		3	1	1

list-parameters:

41001	1	LIST_RS485_BAUDRATE		3	1
41002	1	LIST_RS485_PARITY		3	1
41003	1	LIST_RS485_STOPBIT		3	1

legend of the data types:

U08: 1	S08:	U16

coding of the list parameters (list index:value):

baudrate	$0: 2400$	$1: 4800$	$2: 9600$	$3: 14 \mathrm{k} 4$	$4: 19 \mathrm{k} 2$	$5: 28 \mathrm{k} 8$	$6: 38 \mathrm{k} 4$	$7: 57 \mathrm{k} 6$	$8: 76 \mathrm{k} 8$	$9: 115 \mathrm{k} 2$
stop bit	$0: 1$	$1: 2$								
parity	$0: e v e n$	$1: 0 \mathrm{od}$	2:none							

Fieldbus Devices
Temperature-Input-Bus-Converter

Description

The digital temperature measuring converter of series AD-MV55 GX are freely programmable digital measuring transducer with RS485 interface. Device addresses from 1 to 99 can be set via the laterally accessible address switches. The input of all characteristics directly on the device, or use the configuration software "AD-Studio". The device fulfils all tasks of a universal measuring value recording through integral function modules such as selectable relay functions, simulation modus, free linearizing curves and a wide range of supply voltage. The operating voltage is indicated by a green LED. The data communication is signaled by a yellow LED. Invalid measurement signals outside the defined measuring range are detected. In this case, the green LED flashes. The power supply as well as the RS485 bus interface is possible via the rear DIN rail connector.

Specific characteristics

- Resistance thermometer inputs, types Pt/Ni 100, Pt/Ni 500, Pt/Ni 1000
- Thermocouples inputs, types J, T, K, E, N, S, R, B, C or inputs a mV/Tcharacteristic curve. Selectable internal or external reference junction
- A bipolar mV-Voltage input. Free linearizing curves possible.
- Freely definable scaling of the quantity to be measured through stating range, decimal point position and unit from the list or defined unit.
- Zoom function, expanded scale, linearizing, inverse modus.
- Non-volatile saving of all set parameters.

Business data

Order number
AD-MV 55 GX

Technical specifications	
Resistance thermometer inputs Pt100, Pt500, Pt1000 to DIN EN 60751	
Measuring range	$-200 \ldots+850{ }^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Resolution	16 Bit
Accuracy	0,5 K
Smallest measuring spans	30 K
Max line resistance ${ }^{1 /}$	10 Ohm/cable
Sensor supply	
Pt100	1 mA
Pt500, Pt1000	$210 \mu \mathrm{~A}$
${ }^{1}$ With 2 -conductor the line resistance comes as an offset into the measurement.	
Resistance thermometer inputs Ni100, Ni500, Ni1000 to DIN EN 43760	
Measuring range	$-60 \ldots+230^{\circ} \mathrm{C}$
Connection method	2-, 3- oder 4-wire system
Resolution	16 Bit
Accuracy	0,5 K
Smallest measuring spans	30 K
Max line resistance ${ }^{1 /}$	10 Ohm/cable
Sensor supply	
Ni100	1 mA
Ni500, Ni1000	$210 \mu \mathrm{~A}$

Thermocouples

Comparative place:

Internal
External
Resolution
Accuracy
Measuring range type J To DIN EN 60584:
Measuring range type T
Measuring range type K
Measuring range type E
Measuring range type N
Measuring range type S
Measuring range type R
Measuring range type B
After standard ASTM E988:
Measuring range type C
Smallest measuring spans
Voltage inputs
Measuring range

Resolution
Accuracy $\quad 0,2 \%$ of measuring range
measurement with LM35 in the device connecting terminals Cold junction temperature selectable by parameters
16 Bit
$0,2 \%$ of measuring range
$-200 \ldots+1200^{\circ} \mathrm{C}$
$-200 \ldots+400^{\circ} \mathrm{C}$
$-200 \ldots+1360^{\circ} \mathrm{C}$
$-200 \ldots+1000^{\circ} \mathrm{C}$
$-200 \ldots+1300^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$-40 \ldots+1760^{\circ} \mathrm{C}$
$+400 \ldots+1800^{\circ} \mathrm{C}$
$0 \ldots+2320^{\circ} \mathrm{C}$
100 K
$-18 \ldots+18 \mathrm{mV}$
$-36 \ldots+36 \mathrm{mV}$
$-72 \ldots+72 \mathrm{mV}$
$-144 \ldots+144 \mathrm{mV}$
16 Bit

Fieldbus Devices

Temperature-Input-Bus-Converter

AD-MV 55 GX

Technical specifications

Transmission behaviour

Sampling rate
Temperature influence

RS485-Bus

Software protocol
Data format
Max. bus users
Bus termination
Max. length of bus Cable

LEDs

Green [On]
Yellow [D]

Controls

Address switch

1 measure/s
$+/-100 \mathrm{ppm} / \mathrm{K}$ of full scale

Modbus-RTU
19200, e, 8, 1
99
120 ohms both sides at the end
500 m (no spur lines)
twisted and shielded

Supply (blinking on error) RS485 Communication
$10+1$

Block and wiring diagram

RS-485

Supply voltage

(electrically connected)

Supply	
Supply voltage	18 ... 30 V DC
Max power consumption at 24V DC	300 mW
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Manner of fastening	DIN rail mounting 35mm, EN 50022
Type of protection	IP 20
Connection method	screw clamp
Bolting torque terminals	$0,5 \mathrm{Nm}$
Wire cross section	max. $2,5 \mathrm{~mm}^{2}$
Weight	$\sim 70 \mathrm{~g}$
Environmental conditions	
Permissible ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{2)}$	EN 61326-1
Emission ${ }^{3)}$	EN 55011, CISPR11 CI. A, Gr. 1
${ }^{\text {2) }}$ During electromagnetic disturbance minor changes in output signal are possible.	
${ }^{3}$ Warning: This device is not intended to be used in residential areas and can not ensure adequate protection of radio reception in such environments.	
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages	
Signal / supply unit	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / RS485 bus	no galvanic isolation
Dimensions	

Temperature-Input-Bus-Converter

Modbus Communikation

The AD-MV 55 GX has an RS485 bus interface on which the Modbus RTU protocol is used. About this bus interface all measured data of the device can be read. The preset standard data format is $19200, e, 8,1$. Adaptation to a different data format is possible at any time. The bus address (1...99) is set to the side-mounted rotary switches. The address 0 is not permitted for the bus operation. However, on this zero position the device only via the standard data format (19200, e, 8.1) accessible. The position 0 thus represents a service position, the example can be used during parameterization error.

The AD-MV 55 GX supports two Modbus functions. These are the functions "Read Holding Registers" (0x03) and "Write Holding Registers" (0×10). With the "Read Holding Registers" function data can be read from the device and written with "Write Holding Registers" data. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication. This is online available for free, but can also be purchased from the Adamczewski homepage.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Unit	Datatype	[Code] = Value	\|read ${ }^{\text {write }}$	
Observations:							
40113	1	signal status	keine	U16	0/1/2/4	yes	no
40851	2	signal value	${ }^{\circ} \mathrm{C} / \mathrm{mV}$	float	\#\#\#\#,\#	yes	no
40852	6	scale unit	${ }^{\circ} \mathrm{C} / \mathrm{mV}$	string	unit	yes	no
40811	2	terminal temperature	${ }^{\circ} \mathrm{C}$	float	\#\#,\#\#\#\#	yes	no

43101	2	filter value	numeric	float	seconds		
43001	1	signal type	list	U16	[0]=RTD; [1]= TC; [2]=mV	yes	yes
43002	1	RTD type	list	U16	RTD-Liste	yes	yes
43003	1	RTD connectivity	list	U16	2-3-4-Leiter	yes	yes
43201	2	range begin Pt100	${ }^{\circ} \mathrm{C}$	float	-200...+850	yes	yes
43301	2	range end Pt100	${ }^{\circ} \mathrm{C}$	float	-200... +850	yes	yes
43202	2	range begin Pt500	${ }^{\circ} \mathrm{C}$	float	$-200 \ldots+850$	yes	yes
43302	2	range end Pt500	${ }^{\circ} \mathrm{C}$	float	-200...+850	yes	yes
43203	2	range begin Pt1000	${ }^{\circ} \mathrm{C}$	float	-200... +850	yes	yes
43303	2	range end Pt1000	${ }^{\circ} \mathrm{C}$	float	-200... 850	yes	yes
43204	2	range begin Ni100	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43304	2	range end Ni100	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43205	2	range begin Ni500	${ }^{\circ} \mathrm{C}$	float	-60... +230	yes	yes
43305	2	range end Ni500	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43206	2	range begin Ni1000	${ }^{\circ} \mathrm{C}$	float	-60...+230	yes	yes
43306	2	range end Ni1000	${ }^{\circ} \mathrm{C}$	float	$-60 . . .+230$	yes	yes
43207	2	range begin R/T	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43307	2	range end R/T	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43401	2	R/T characteristic X1	Ohm	float	0... 4000	yes	yes
43425	2	R / T characteristic Y 1	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
$43400+n$	2	R/T characteristic Xn	Ohm	float	0... 4000	yes	yes
$43424+n$	2	R/T characteristic Yn	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43424	2	R/T characteristic X24	Ohm	float	0... 4000	yes	yes
43448	2	R/T characteristic Y24	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43004	1	TC type	list	U16	TC-Liste	yes	yes
43005	1	junction	list	U16	[0]=int.; [1]=ext.	yes	yes
43102	2	junction temperature	${ }^{\circ} \mathrm{C}$	float	0... 100	yes	yes
43208	2	range begin Typ J	${ }^{\circ} \mathrm{C}$	float	-200...+1200	yes	yes
43308	2	range end Typ J	${ }^{\circ} \mathrm{C}$	float	-200...+1200	yes	yes
43209	2	range begin Typ T	${ }^{\circ} \mathrm{C}$	float	-200... +400	yes	yes
43309	2	range end Typ T	${ }^{\circ} \mathrm{C}$	float	-200...400	yes	yes
43210	2	range begin Typ K	${ }^{\circ} \mathrm{C}$	float	-200...+1360	yes	yes
43310	2	range end Typ K	${ }^{\circ} \mathrm{C}$	float	-200...+1360	yes	yes
43211	2	range begin Typ E	${ }^{\circ} \mathrm{C}$	float	-200...+1000	yes	yes
43311	2	range end Typ E	${ }^{\circ} \mathrm{C}$	float	-200...+1000	yes	yes
43212	2	range begin Typ N	${ }^{\circ} \mathrm{C}$	float	-200...+1300	yes	yes
43312	2	range end Typ N	${ }^{\circ} \mathrm{C}$	float	-200...+1300	yes	yes
43213	2	range begin Typ S	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43313	2	range end Typ S	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43214	2	range begin Typ R	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43314	2	range end Typ R	${ }^{\circ} \mathrm{C}$	float	-40...+1760	yes	yes
43215	2	range begin Typ B	${ }^{\circ} \mathrm{C}$	float	+400... +1800	yes	yes
43315	2	range end Typ B	${ }^{\circ} \mathrm{C}$	float	+400 ... 1800	yes	yes
43216	2	range begin Typ C	${ }^{\circ} \mathrm{C}$	float	0...+2320	yes	yes
43316	2	range end Typ C	${ }^{\circ} \mathrm{C}$	float	0...+2320	yes	yes

Fieldbus Devices
Temperature-Input-Bus-Converter

43217	2	range begin U/T	${ }^{\circ} \mathrm{C}$	float	-200...+2500	yes	yes
43317	2	range end U/T	${ }^{\circ} \mathrm{C}$	float	-200...+2500	yes	yes
43449	2	U/T characteristic X1	mV	float	-144... 144	yes	yes
43473	2	U/T characteristic Y1	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43448 + n	2	U/T characteristic Xn	mV	float	-144... 144	yes	yes
$43472+n$	2	U/T characteristic Yn	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
43472	2	U/T characteristic X24	mV	float	-144... 144	yes	yes
43496	2	U/T characteristic Y24	${ }^{\circ} \mathrm{C}$	float	-200... 1500	yes	yes
42997	1	baud rate	index	U16	see list below	yes	yes
42998	1	parity		U16	[0]=even; [1]=odd; [2]=no	yes	yes

Coding baudrate list

index	0	1	2	3	4	5	6	7	8	9
baud	2400	4800	9600	14400	19200	28800	38400	57600	76800	115200

Description

The Monitor module AD-MM 400 FE is a display and control unit for front panel mounting. The device can be used as master or slave. As a master, the device reads the displayed values of devices that are connected via the RS485 interface with the AD-MM 400 FE. The display values are polled at a certain time frame. The display values can be any data such as measured values, output values, digital inputs or outputs or various counters for energy or amounts. In addition to the display function, the AD-MM 400 FE can configure the connected devices via the menu. As a slave, the device can also be used as pure display device, where the display values are then sent from a master to the ADMM 400.

Application

Display measurements in a graphic display. Scroll through multiple views. Configuration of connected devices via their menu.

Specific characteristics

- Connection in the master operation of up to 32 slaves.
- Scroll up to 10 different user-configurable displays.
- Display of up to 4 values per display.
- Freely configurable labeling of the displays and values.
- Convenient configuration of the displays via PC software AD-Studio.
- Connection of several AD-MM 400 FE on a bus in slave mode.

Technical specifications

Supply	
Supply voltage	$20 . .253 \mathrm{~V}$ AC/DC
Max. power consumption	1,0W / 2,0VA
Housing	
Dimensions (WxHxD)	$96 \times 96 \times 63 \mathrm{~mm}$
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Manner of fastening	Panel-mount-case
Weight	205 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Interface 1	
Standard	RS-485
Protocol	Modbus-RTU
Max. attendance	32
Max. length of bus	100 m
Bus termination	120 Ohm (both sites of the bus)
Wiring	bus topology
Interface 2	
Standard	UART, proprietary
Function	configuration
Display	
Type	3,5" TFT
Resolution	320x240 Pixel
Operation	
Type	3 short-stroke keys

Business data

Order number
AD-MM 400 FE

Indicator

Block and wiring diagram

Dimensions

Circuit examples

Description

The AD-MM 500 FE monitor module is a display device, control unit and data logger for front panel installation. The AD-MM 500 FE always works as a Modbus master. It collects the values that are to be displayed or logged cyclically from one or more Modbus slaves. The values can be any data such as measured values, output values, digital inputs or outputs or various counters for energy or quantities. The display is done by freely configurable display elements such as numeric display, bar graphs, time diagrams, drag pointers, LEDs, etc. In addition to the display function, the AD-MM 500 FE can also configure connected devices from ADAMCZEWSKI. To do this, you can navigate in the menu of the connected device and configure the desired parameter. The logged data is saved on an internal micro SD card. They can be picked up at any time with a USB stick.

Application

Display measurements in a graphic display. Scroll through multiple views. Configuration of connected devices via their menu. Log the data for later evaluation.

Specific characteristics

- Connection in the master operation of up to 32 slaves.
- Scroll up to 10 different user-configurable displays.
- Display of up to 4 values per display.
- Freely configurable labeling of the displays and values.
- Convenient configuration of the displays via PC software AD-Studio.
- Connection of several AD-MM 400 on a bus in slave mode.

Business data

Order number
AD-MM 500 FE

Technical specifications

Supply	
Supply voltage	$20 . .253$ V DC
Supply voltage	$50 . .253 \mathrm{~V}$ AC
Max. power consumption	2,0W / 4,0VA
Housing	
Dimensions (WxHxD)	96x96x63 mm
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Manner of fastening	Panel-mount-case
Weight	350 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
Pollution degree	2
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
RS485-interface	
Connection	3 -pin socket 3.81 mm grid
Standard	RS-485
Function	Modbus-Master
Protocol	Modbus-RTU
Max. attendance	32
Max. length of bus	100m - twisted, shielded cable
Bus termination	120 Ohm (both sites of the bus)
Configuration interface	
Connection	3.5 mm jack socket
Standard	UART, proprietary
Function	configuration
Network interface	
Connection	RJ45 socket
Standard	Ethernet
Function	Reserve for future expansions
USB interface	
Connection	Type A socket for USB stick
Standard	USB 1.0, 2.0
Function	Data transfer
Display	
Type	3,5" TFT
Resolution	320×240 Pixel
Operation	
Type	3 short-stroke keys
Data logger	
Internal memory size	2 GB (andere auf Anfrage)
Internal storage medium	$\mu S D$, single level cell
Sampling interval	1s ... ~18h
Max. channels	32
Data format	*.csv

Block and wiring diagram

Dimensions

Indicating / Operating Module

Description

The removable control modules AD-VarioControl are used to display measured values of a base device (transmitter, isolation amplifiers ...) with a relevant interface. After plugging in, which is also possible during operation of the base device without restrictions, the basic device is automatically read out and the corresponding measured value is displayed. In addition to the display function, access to the parameters and controller functions of the basic device is also possible. The parameter settings can be loaded into the control panel using the backup function and can be restored on a different base device of the same type.
Establishment of a transmitter is usually necessary only once in the operating period of a device, therefore a display and operating elements are not permanently necessary for each device. By using the ADVarioControl in connection with compatible basic equipment, operating elements and displays on each individual device can be dispensed with. This way, the installed devices are tamper-proof and more cost-effective. The AD-VarioConnect has a fieldbus interface with the protocol ModbusRTU via RS485. All measured values of the basic units are available above this.

Application

Control device to display and configuration of DIN rail devices with optional fieldbus.

Specific characteristics

- Removeable (hot-plugged)
- Store and restore of parameters
- LCD for display of different operating modes, lit in several colours (R/Y/B)
- Menu languages switchable to: German, English
- Simulation modus
- Fieldbus interface with Modbus RTU (AD-VarioConnect)

Business data	
Order number	
Control panel	AD-VarioControl
Control panel with RS485	AD-VarioConnect
Basic devices	
Frequency measuring	AD-FM 255 GVD
converter	
Limit-Switch	AD-MK 350 GVD
Temperature Measuring	AD-MV 550 GVD
Converter	
Power measurement transducer	AD-LU 320 GVD / AD-LU 325 GVD
Power measurement	AD-LU 620 GVF / AD-LU 625 GVF
transducer	
Isolation amplifier	AD-TV 400 GVD
Isolation amplifier	AD-TV 420 GVD
AC Isolation Amplifier	AD-TV 588 GVD
Multifunction transducer	AD-VC 1 GVD

Technical specifications

Display	
Type	LCD graphic
Dimensions (WxH)	$18 \times 13 \mathrm{~mm}$
Resolution	42X56 Pixel
Lighting	RGB
Operation	
Type	3 short-stroke keys
RS485 Bus (Varioconnect)	
Protocol	Modbus-RTU
Data format (default)	19200, e, 8, 1
Max. bus users	32
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
Supply	
Supply voltage	5 DC
Max. power consumption	0,2 W
Housing	
Dimensions (WxHxD)	$20 \times 86 \times 14 \mathrm{~mm}$
Dimensions with clamp	20x95x14 mm
Type of protection	IP 20
Weight	20 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages (VarioConnect)	
RS485-bus to basic device	1,5 kV

Indicating / Operating Module

AD-VarioControl

Dimensions

Special Functions

USB Programming Adapter

Description

The programming adapter AD-VarioPass 3 is a galvanic separated programming adapter, which is operated with the PC via an USB interface. With this USB programming adapter, the digital devices of the company Adamczewski can be parameterized. The AD-VarioPass 3 is simply connected to a free USB interface of the PC via the enclosed USB cable. The AD-VarioPass 3 has, on the secondary side, three device interfaces, which create the connection to the device with diverse cable connector, which are supplied. It has a jack plug (UART interface), via a double terminal (RS485 bus) and a pin connector (UART-interface). Dependent on the device, the correct interface is selected. Two or three interfaces must never be used simultaneously. For the correct function of the programming adapter, the suitable hardware driver must be installed. As soon as the driver is installed correctly, a virtual COM interface is established, via which the communication to the device is realised. To obtain access to the parameter of the connected device, it is recommended to install the free-of-charge configuration software AD-Studio. The current versions of the software and of the hardware driver can be downloaded from the download area of the homepage of the company Adamczewski. When installing the software AD-Studio, the hardware driver for the programming adapter AD-VarioPass 3 can also be installed. With the ADVarioPass 3 and the configuration software AD-Studio, all digital Adamczewski devices can be parameterized.

Application

Access to all digital devices of the company Adamczewski from the PC.

Specific characteristics

- USB-port enables connection to a PC - galvanically isolated from:
- UART-port enables connection to relevant Adamczewski device
- RS485-port enables connection to relevant Adamczewski device
- UART+-port enables connection to relevant Adamczewski device

Technical specifications	
PC connection / supply	
Voltage range USB	4,8 ... 5,2 V DC
Nominal voltage USB	5 V DC
Power consumption	< 1 W (depending on the output load)
Device interface 1	
UART	Standard UART device interface for the connection of most Adamczewski devices
Device interface 2	
RS485 BUS	RS485 bus-interface for connecting BUS-enabled devices
Device interface 3	
UART+	UART interface with integrated 5 V supply
Housing	
Dimensions (WxHxD)	$42 \times 22 \times 63 \mathrm{~mm}$
Type of protection	IP 20
Connection method PC	USB interface
Connection method interface 1	stereo jack (UART)
Connection method interface 2	2-wire plug-in terminal (RS485)
Connection method interface 3	6 -pin connector (UART+)
Weight	$\sim 50 \mathrm{~g}$
Manner of fastening	hand-held case
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots .70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{11}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation, test voltages	
USB to outputs	$1 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
USB	electrical surge protection
RS485 bus interface	electrical surge protection
${ }^{11}$) Uuring checking, slight signal deviations are	possible.

Business data

Order number
AD-VarioPass 3

Interface Converter

Description

The network interface converter (AD-NETGW 100 GT) enables a connection to devices with serial interface vie IP-based networks (LAN). For this, the device contains a LAN connection, a RS485 interface and an AD-UART interface. An integral wide range power pack enables operation in almost all supply situations.

Application

The AD-NETGW 100 GT makes access to measuring values and unit conditions from distant sites possible at all times. Devices can be parameterized or measuring values can be read out. For instance, this way conditions in pumping stations can be interrogated and monitored at any time. The remote maintenance of ADAMCZEWSKI devices in local networks or via the internet can be realised.

Specific characteristics

- Ethernet 10/100 Mbit
- Protocols: modbus/TCP, modbus-RTU, data transparency
- RS-485 interface for field devices
- Integrated web server for configuration
- Password protected configuration

Business data

Order number

AD-NetGw 100 GT

Technical specifications

Ethernet-interface	
LAN	10/100 Mbit
Protocol	TCP/P
Addressing	IP4
DHCP	can be deactivated
IP standard address	192.168.178.99
Access port	80
Password protection	configuration / webserver
RS485-interface	
Baud rate	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800
Data format	8N1, 8E1, 801
Max. bus users	32
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (no stubs)
Cable	twisted and shielded
AD-UART-interface	
Baud rate	$\begin{aligned} & 2400,4800,9600,14400,19200 \\ & 28800,38400,57600,76800 \end{aligned}$
Data format	8N1, 8E1, 801
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage DC	24 V DC
Input power AC/DC	1,8 VA / 1 W
Housing	
Dimensions (WxHxD)	$35,5 \times 90 \times 58 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,6 \mathrm{Nm}$
Skinning length	6 mm
Weight	$\sim 90 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{17}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Supply line to all interfaces	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Ethernet to AD-UART/RS-485	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Interfaces	electrical surge protection
Power supply	protection against over-temperature, over-voltage and over-current

Interface Converter

Block and wiring diagram

Dimensions

Interface Converter

Function

On the network side, the device has 6 freely usable TCP channels, socalled sockets. Each of these channels can be configured freely. Also, this way up to 6 simultaneous network enquiries can be processed (i.e. of Modbus-TCP masters). For each channel, port number, bridge functions and timeout can be set. The data transport path such as Modbus-TCP can be determined on RS485 modbus RTU via the bridge functions. The date interfaces work simultaneous and independent of each other. The setting up of the serial interfaces is possible in different tapes of protocol. The connection of any device with serial interface is, of course, also possible due to the transparent router function. Ready for operation is indicated by the green illuminated diode at the LAN socket when the network cable is plugged in. The device configuration is carried out via the web server integral in the device. Here, all settings can be carried out manually via one surface. Alternatively, the device can be set up with the PC software "AD-Studio" via the AD-UART interface. Apart from the protocol conversion Modbus-TCP to Modbus-RTU, a data transparent connection can also be selected. With this, any devices with the most diverse protocols can be tied to IP networks. Already at the initial commissioning via the web interface, a password for the web surface is essential. This password is activated during the initial use of the set-up surface and will be asked for again with each new session.

Accessories (not included)

The voltage multiplier AD-SV 1224 GL is suitable for operation with 12 V supply voltages. For connection to ADAMCZEWSKI devices with ADUART interface, an adapter cable, 6 polar on a jack, is available.

Circuit examples

RS485-Bus (Modbus-RTU)

Frequency Converter

Description

The AD-FM 300 GT (1-channel) and AD-FM 600 GT (2-channel) are freely programmable frequency/analog measuring transducers with integrated display unit. Due to its multifunctional processing of the input frequency and the up to 2 analog outputs (current/voltage) per channel or the evaluable digital outputs, the device is optimally suited for the display of instantaneous flow rates with simultaneous evaluable counting pulse output for water meters with main and sub meters. Especially for large water meters with bypass, a scaled summation is integrated in the AD-FM 600 GT . Both the instantaneous flows and the counted quantities are output. A low level suppression is shiftable.

Application

The main area of application is the through-flow measuring at water meters. Further applications are the measuring of rotation speed or energy consumption.

Specific characteristics

- 1 (AD-FM 300 GT) or 2 (AD-FM 600 GT) channels in just one housing
- Inputs: NAMUR, contact, open collector, 3-conductor Opto, 24 V activ
- Analog outputs: each channel 1 current and 1 voltage (synchronous)
- Digital outputs: relay respectively optocouple (puls function or limit contact)
- Scaled summation and shiftable low level suppression
- Programming directly on the device or free programming software
- DIN rail mounting

Business data

Order number

AD-FM 300 GT
AD-FM 300 GTO
AD-FM 600 GT
AD-FM 600 GTO

Accessory (optional)

USB programming adapter

1 relay output
1 semiconductor output
2 relay outputs
2 semiconductor outputs

AD-VarioPass / AD-Studio

Technical specifications

Digital inputs
 Input

Input frequency
Frequency generator supply
Contact debouncing

Current outputs

Output range
Max. burden
Residual ripple
Voltage outputs
Output range
Min. burden
Residual ripple

Relay outputs

Maximum switching load AC
Maximum switching load DC
Contact construction
Switching operations mechanical
At $230 \mathrm{~V} / 2 \mathrm{~A} A C, \cos (\mathrm{phi})=1 \quad 600000$
At $230 \mathrm{~V} / 2 \mathrm{~A} A C, \cos (\mathrm{phi})=0,4$
At 24V/1 A DC

Display

Graphic-LCD
Digital display
400 Ohm
< 50μ Ass

10 kOhm
$<20 \mu \mathrm{Vss}$

250 V, 2 A
$50 \mathrm{~V}, 2 \mathrm{~A}$

10000000

200000
200000

NAMUR (EN 60947-5-6), reed contact, open-collector, 3-lead optotransmitter or 24 V active
$\min .0 \ldots 10 \mathrm{mHz}$; max. $0 \ldots 10 \mathrm{kHz}$
active: max. $10 \mathrm{~V} / 10 \mathrm{~mA}$;
NAMUR:8V/8mA
activatable, pulse duration $>40 \mathrm{~ms}$

0 ... $20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}$

0 ... $10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$
changeover contact

122×32 Pixel, background lit
5-digit, can be configured
Display functions each channel input frequency, scaled instantaneous measuring value, quantity impulse, scaled dimension as quasi analogue bar

Accuracy

Unit
Temperature influence
Update rate

Supply

Supply voltage
Max. power consumption

RS485-Bus

Software protocol
Data format
Max. bus users
Bus termination
Max. length of bus
Cable

0,3\%
<100 ppm / K
1 s

20 ... 253 V DC / 50 ... 253 V AC
4,5 W / 7,5 VA

Modbus-RTU

19200, e, 8, 1
247
120 ohms both sides at the end
500 m (no stubs)
twisted and shielded

Frequency Converter

Technical specifications	
Housing	
\quad Dimensions (WxHxD)	$105 \times 90 \times 58 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,6 \mathrm{Nm}$
Skinning length	6 mm
Weight	$\sim 300 \mathrm{~g}$
Manner of fastening	35 mm DIN rail
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Block and wiring diagram

Halbleiterausgang

 (Option)Semiconductor
output
(option)

EMC

Product family standard
Emitted interference
EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1 In a critical EMC environment, shielded encoder cables are recommended.

Electrical safety requirements

Product family standard
Overvoltage category
Pollution degree

Galvanic isolation, test voltages

Input/output
1 kV RMS (1 min.)
Signal/auxiliary voltage $\quad 3 \mathrm{kV}$ RMS (1 min.)

Dimensions

Frequency Converter

Modbus Communication

The AD-FM 300 GT / AD-FM 600 GT has an RS485 bus interface on which the Modbus-RTU protocol is used. All measured values ??of the device can be read out via this bus interface. The preset standard data format is 19200, e, 8,1. The bus address can be set (1...247). Adaptation to a different data format is possible at any time. The device configuration can be carried out manually using the menu navigation or using AD Studio software on one of the interfaces itself.
With the Read Holding Registers (0x03) function, data can be read individually from the device.
The device does not support multiple register read. The individual register width is 16 bits. Please see the Modbus specification for detailed explanations of the Modbus communication.

The following Modbus data are accessible via the RS485 bus:

Start address	Reg. number	Name	Datatype	[Code] = Value
40102	2	Counter Z1	U32	
40103	2	Input frequency F1	float	Hz
40104	2	Scale value E1	float	Unit / [s, min, h]
40105	2	Analog output value A1	float	V / mA
40601	2	Digital output value D1	U 16	$0 / 1$
40112	2	Counter Z2	U 32	
40113	2	Input frequency F2	float	Hz
40114	2	Scale value E2	float	$\mathrm{Unit} \mathrm{/} \mathrm{[s}, \mathrm{min} \mathrm{~h}]$,
40115	2	Analog output value A2	float	V / mA
40611	2	Digital output value D2	U 16	$0 / 1$

Frequency Converter

Circuit examples

Description

The AD-FM 300 FE/GA (1-channel) and AD-FM 600 FE/GA (2-channel) are freely programmable frequency/analog measuring transducers with display units for panel mounting (FE) and DIN-rail mounting (GA). Through its multi-function input frequency processing and the up to 2 analog outputs (current/voltage) of each channel and the assessable digital outputs, the device is ideally suited for the display of instantaneous flow with simultaneous assessable for counting pulse water meter with main and secondary points. Especially for water meters with bypass a scaled summation is integrated (only AD-FM 600 FE/GA). A low level suppression is shiftable. Both the instantaneous flow rates and the meter quantites are outputted added.

Application

The main area of application is the through-flow measuring at water meters. Further applications are the measuring of rotation speed or energy consumption.

Specific characteristics

- 1 (FM300) or 2 (FM600) channels in just one housing
- Inputs: NAMUR, contact, open collector, 3-conductor Opto, 24 V activ
- Analog outputs: each channel 1 current and 1 voltage (synchronous)
- Digital outputs: relay respectively optocouple (puls function or limit contact)
- Scaled summation
- Shiftable low level suppression
- Programming directly on the device or via a free programming software
- DIN rail or panel mounting

Business data

Order number

AD-FM 300 FE
AD-FM 300 GA
AD-FM 600 FE
AD-FM 600 GA
1-channel; front mounting
1-channel; DIN rail mounting
2-channel; front mounting
2-channel; DIN rail mounting

Technical specifications

Digital inputs	
Input	NAMUR (EN 60947-5-6), reed contact, open-collector, 3-lead optotransmitter or 24 V active
Input frequency	min. 0 ... 10 mHz ; max. 0 ... 10 kHz
Frequency generator supply	active: max. $13,5 \mathrm{~V}$ (max. 20 mA); NAMUR:8V/8mA
Contact debouncing	activatable, pulse duration $>40 \mathrm{~ms}$
Current outputs	
Output range	0 ... 20 mA ; 4 ... 20 mA
Max. burden	400 Ohm
Residual ripple	<50 μ Ass
Voltage outputs	
Output range	0 ... $10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$
Min. burden	10 kOhm
Residual ripple	<20 $\mu \mathrm{Vss}$
Relay outputs	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	changeover contact
Switching operations mechanical	10000000
at $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	600000
at $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	200000
at $24 \mathrm{~V} / 1$ A DC	200000
Display	
Graphic-LCD	122x32 Pixel, background lit
Digital display	5 -digit, can be configured
Display functions each channel	input frequency, scaled instantaneous measuring value, quantity impulse, scaled dimension as quasi analogue bar, channel description and scaling unit in plain language
Accuracy	
Unit	0,3\%
Temperature influence	<100 ppm / K
Response time	$\sim 70 \mathrm{~ms}$
Supply	
Supply voltage	20 ... 253 V DC / 50 ... 253 V AC
Max. power consumption	$4 \mathrm{~W} / 5 \mathrm{VA}$
Housing front mounting	
Manner of fastening	Panel-mount-case (DIN 43 700)
Type of protection	IP 65
Connection method	screw clamp
Dimensions (WxHxD)	$96 \times 48 \times 131 \mathrm{~mm}$
Front panel cut out	$92 \times 44 \mathrm{~mm}$
Switchboard thickness	1,5-10 mm
Weight	$\sim 230 \mathrm{~g}$
DIN rail housing	
Manner of fastening	DIN rail 35mm (EN 50022)
Type of protection	IP 20
Connection method	screw clamp
Dimensions (WxHxD)	$100 \times 74 \times 119 \mathrm{~mm}$
Weight	$\sim 230 \mathrm{~g}$

Frequency Converter

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard Emitted interference
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1 In a critical EMC environment, shielded encoder cables are recommended.

Electrical safety requirements

Product family standard
Overvoltage category
Pollution degree
Galvanic isolation test voltages
Input/output
2 kV RMS (1 min.)
Signal/auxiliary voltage $\quad 4 \mathrm{kV}$ RMS (1 min.)

More technical documentation

instruction manual

Block and wiring diagram

AD-FM 600 GA

Dimensions

Frequency Converter

AD-FM 300/600 FE

Circuit examples

Frequency Converter

Description

The frequency measuring converter AD-FM 255 GVD supplies an initiator or a contact and transforms its impulse sequence to a proportional impressed analogue signal. The output signal is independent from the connected load up to a maximum value. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating panel AD-VarioControl or via the programming software AD-Studio. Input, output and the supply voltage are separated from each other galvanically with high isolation.

Application

The main area of application is the through-flow measuring at water meters, further applications are energy consumption measuring etc.

Specific characteristics

- Inputs: NAMUR, contact, open collector, 3-conductor Opto, 24 V activ
- Outputs: current and voltage
- Digital output: Relay or semiconductor (pulse or limit value function)
- Operating module VarioControl as an accessory
- Programming via configuration software

Business data

Order number

AD-FM 255 GVD
AD-FM 255 GVD-O

Accessory (optional)

Operating module
USB programming adapter
relay output
semiconductor output

AD-VarioControl
AD-VarioPass /AD-Studio

Technical specifications	
Digital input	
Input	NAMUR (EN 60947-5-6), reed contact, open-collector, 3-lead optotransmitter or 24 V active
Input frequency	$\min .0 \ldots 10 \mathrm{mHz}$; max. $0 \ldots 10 \mathrm{kHz}$
Frequency generator supply	active: $8 \mathrm{~V} / 8 \mathrm{~mA}$
Kontaktentprellung (activatable)	40 ms
Output current	
Output range	0... 20 mA
Max. burden	400 Ohm
Residual ripple	< 50μ Ass
Output voltage	
Output range	$0 \ldots 10 \mathrm{~V}$
Min. burden	10 kOhm
Residual ripple	$<20 \mu \mathrm{Vss}$
Accuracy	
Unit	<0,3\%
Temperature influence	<100 ppm / K
Response time	approx. 70 ms
Relay output	
Contact type	potential-free changeover
Max. AC-breaking capacity	250 V AC, 2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2 * 10^{5}$
Semiconductor output (optional)	
Max switching voltage	30 V DC
Max. switching current	50 mA DC
Voltage drop	$<1 \mathrm{~V}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253 \mathrm{~V}$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	3,7 VA / 2,1 W
Housing	
Dimensions (WxHxD)	$23 \times 110 \times 134 \mathrm{~mm}$
With operating module (bxhxt)	$23 \times 110 \times 138 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 140 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Frequency Converter

Technical specifications

EMC

Product family standard ")	EN 61326-1
Emitted interference	EN 55011, C In a critical E shielded enco recommende "During electromagnetic disturbance minor changes in output signal
Electrical safety requirements Product family standard EN 61010-1 Overvoltage category II Pollution degree 2	

Galvanic isolation, test voltages

Input/output	2 kV RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)

Block and wiring diagram

Display and operating elements

On: LED for the power indicator in green
lights up - normal operation
flashing - signal failure, signal outside range limits
In: LED for input pulse signal
$0 \ldots 7 \mathrm{~Hz}$ - according to signal
$>7 \mathrm{~Hz}-7 \mathrm{~Hz}$ flashing Out: LED for the relays / semiconductor lights up - relay energized
AD-PC: Communication interface for configuration by a PC
Communication interface VarioControl

Dimensions

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the ADVarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.
The Modbus master can read out the individual registers of the AD-FM 255 GVD via the addresses.
The default standard data format is $19200, e, 8,1$ with slave address 1 . These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values:						
40801	2	Input frequency	Hz	float	1	0
40803	2	Scaled input		float	1	0
40805	2	Input percentage	\%	float	1	0
40901	2	Output signal voltage	V	float	1	1
40903	2	Output signal current	mA	float	1	1

Frequency Converter

Description

The frequency measuring converter AD-FM 250 GVC supplies an initiator or a contact and transforms its impulse sequence to a proportional impressed analogue signal. The output signal is independent from the connected load up to a maximum value. Furthermore, this series of devices is equipped with a configuration interface AD-PC as standard, with which the input and output measuring signal can be freely programmed with the programming software ADStudio. Input, output and the supply voltage are separated from each other galvanically with high isolation.

Application

The main area of application is the through-flow measuring at water meters, further applications are energy consumption measuring etc.

Specific characteristics

- Inputs: arbitrary
- Outputs: current and voltage
- Programming via configuration software

Business data

Order number
AD-FM 250 GVC

Block and wiring diagram

Technical specifications

Digital input

Input

Input frequency
Frequency generator supply
Contact debouncing
Output current
Output range
Max. burden
Residual ripple
Output voltage
Output range
Min. burden
Residual ripple

Accuracy

Unit
Temperature influence
Response time

Supply

Supply voltage
Max. power consumption

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Manner of fastening
Weight

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference

NAMUR (EN 60947-5-6), reed contact, open-collector, 3-lead optotransmitter or 24 V active
$\min .0 \ldots 1 \mathrm{mHz}$; max. 0 ... 10 kHz active: ca. $13,5 \mathrm{~V}$ (max. 13 mA); NAMUR:8V/8mA
activatable, pulse duration $>40 \mathrm{~ms}$

0 ... $20 \mathrm{~mA} ; 4$... 20 mA
500 Ohm
$<50 \mu$ Ass

0 ... $10 \mathrm{~V}, 2$... 10 V
10 kOhm
$<20 \mu \mathrm{Vss}$

0,3\%
<100 ppm / K
approx. 70 ms
20 ... 253 V DC / 50 ... 253 V AC
2 W/3,6 VA
$18 \times 110 \times 134 \mathrm{~mm}$
IP 20
detachable terminal clamp
DIN rail 35mm (EN 50022)
ca. 130 g
$-10 . . .50^{\circ} \mathrm{C}$
-10 ... $70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
In a critical EMC environment,
shielded encoder cables are recommended.

Galvanic isolation, test voltages

Input/output	2 kV RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)

Dimensions

vertrieb@ad-messtechnik.de

Frequency Converter

Description

The frequency converter AD-FM 210 GS is adapted ex works for userside sensors and delivered exactly calibrated for the application. He can supply an initiator or a contact. Default switching thresholds are set for active signals. The required data must be given when ordering the device. The input pulse train is converted into a proportional impressed analog signal. The output signal is independent of the connected load up to a maximum value.

Application

The main area of application is flow measurement in water meters, other applications are energy consumption measurements, wind and speed measurements, etc. All common encoder types can be used: initiator according to NAMUR (DIN-EN 60947-5-6), 3-wire optical encoder, reed contacts, transistor outputs and other initiators .

Specific characteristics

- Wide range power supply
- Factory signal adjustment
- Adjustment trimmer optional
- analog signal processing
- no software
- Status LEDs

Business data

Catalog number

Order details:

Signaling device
Frequency
Analog output signal
Output signal
Response time

AD-FM 210 GS

Type \& Connection technology Range
mA/V
Range
Seconds

Technical specifications	
Digital input	
Input	NAMUR (EN 60947-5-6), reed contact, open-collector, 3-lead optotransmitter or 24 V active)
Input frequency	min. 0 ... 500 Hz ; max. 0 ... $20 \mathrm{kHz}{ }^{\text {² }}$
Frequency generator supply	active: $8 \mathrm{~V} / 8 \mathrm{~mA}^{1}$
Output current	
Output range	0 ... $20 \mathrm{~mA}{ }^{\text {" }}$
Max. burden	500 Ohm
Residual ripple	< 50μ Ass
Output voltage	
Output range	$0 \ldots 10 \mathrm{~V}^{1)}$
Min. burden	500 Ohm
Residual ripple	< $20 \mu \mathrm{Vss}$
	${ }^{\text {"S }}$ Specity in plain text when ordering.
Accuracy	
Unit	< 0,3\%
Temperature influence	< $100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 200 \mathrm{~ms}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,5 VA / 1,2 W
Housing	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$23 \times 78 \times 103 \mathrm{~mm}^{3}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 200 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard ${ }^{2)}$	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
	In a critical EMC environment, shielded encoder cables are recommended.
${ }^{2}$) During electromagnetic disturbance minor changes in output signal are possible.	
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input/output	2 kV RMS (1 min.)
Signal/auxiliary voltage	3 kV RMS (1 min.)

Frequency Converter

Display and operating elements

	Designation	Meaning
(3) (e)	Power	LED green, Power supply
-	Input	LED red, Input signal
AD-FM 210 GS	Zero	Trimmer 0%-Value
$\bigcirc \bigcirc$	Span	Trimmer 100%-Value
Power Input		
(0)		
(0)		
\triangle Aapanczess		
$\text { 효 } 8 \text { bis }$		
Front		

Block and wiring diagram

Dimensions

Impulse Converter

Analogue-Pulse-Converter

Description

The analogue pulse converter AD-AI 200 GVC converts analogue signals to quantity signals, which, for instance, correspond to a flow or throughput. These pulses are outputted via the internal relay or, optionally, via a faster transistor. The AD-AI 200 GVC is equipped with a compact switching power supply, which works with high efficiency in a wide supply voltage range. The converter can be configured via the PC with an available parametric software AD-Studio. However, it can also be delivered preset.

Application

Producing quantity signals from a current or voltage signal. The exact description of the function can be found in the document "Functionality Al200GVC.pdf". Practical example 1: Input: $0 . . .20 \mathrm{~mA}$ corresponds to a flow of $1000 \mathrm{l} / \mathrm{h}$ Output: 1 pulse/l Practical example 2: Input: $0 . . .10 \mathrm{~V}$ corresponds to a throughput of $10 \mathrm{~kg} / \mathrm{min}$ Output: 10 pulses $/ \mathrm{kg}$

Business data

Order number

AD-AI 200 GVC
AD-AI 200 GVCO
relay output
transistor output

Technical specifications	
Input	
Input current	0/4 ... 20 mA (Rin: 50 Ohm) resolution 10 Bit
Input voltage	0/2 ... 10 V (Rin: 100 kOhm) resolution 10 Bit
Relay output	
Max. load AC	$250 \mathrm{~V} / 2 \mathrm{~A}(\operatorname{cosphi}=1)$
Max. load DC	$50 \mathrm{~V} / 1 \mathrm{~A}$ (resistive load)
Cycles AC- load	$2 \mathrm{~A}(\cos$ phi $=1)$: ca. 110000
Cycles DC- load	1 A (resistive load): ca. 100000
Pulse duration	0,5 ... 5 s
Transistor output (optional)	
Max. load DC	$30 \mathrm{~V} / 50 \mathrm{~mA}$
Pulse duration	$0,05 \ldots 5$ s (50% duty cycle at high frequency)
Supply	
Voltage range	20 ... 253 V DC / 50 ... 253 V AC
Power consumption	max. 1,5 W/ $2,6 \mathrm{VA}(50 \mathrm{~Hz}$)
Accuracy	
Accuracy	< 0,2 \%
Input (AD-Converter)	ca. $0,1 \%$ of full scale
Housing	
Dimensions (WxHxD)	$18 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp $\left(2,5 \mathrm{~mm}^{2}\right.$ flex wire / $4 \mathrm{~mm}^{2}$ one wire)
Bolting torque screw terminals	0,5 Nm
Weight	135 g
Manner of fastening	DIN rail 35mm (EN 50022)
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages	
Input / output	4 kV (1 min.)
Signal / supply unit	4 kV (1 min.)
Protection circuits	
Input	electrical surge protection
Power supply	electrical surge and reverse current protection
Relay output	no protection
Transistor output	electrical surge protection

Impulse Converter

Analogue-Pulse-Converter

Block and wiring diagram

AD-AI 200 GVC

Dimensions

AD-AI 200 GVCO

Description

The pulse summator AD-IS 102 GVC adds pulses arriving at two inputs and gives out sum-proportional pulses via its relay or transistor outputs. During this, the input pulses can be ready in any sequence and also at the same time. Each input can be assessed freely, this way differently assessed pulses can also be added. For evaluation of the inputs only whole number factors or divisors are possible. Mechanical contacts, NAMUR transmitter, active signals and semi-conductor switches can be connected and evaluated. The device can be parameterized by the customer via the optional PC configuration software AD-Studio, however, it can also be delivered preset. The inputs and outputs as well as the power pack are galvanic separated with high insulation. The transfer function of the device is: $\mathrm{O}=\left(11^{*}(\mathrm{~F} 1 / \mathrm{D} 1)\right)+\left(12^{*}(\mathrm{~F} 2 / \mathrm{D} 2)\right) \mathrm{O}=$ output, $\mathrm{I}=$ input, $\mathrm{F}=$ factor, $\mathrm{D}=$ divisor

Application

Adding of any quantity signals, such as through-flows or energy. Application example of energy balance: Input 1: $1000 \mathrm{Imp} / \mathrm{kWh}$, Input 2: $10 \mathrm{Imp} / \mathrm{kWh}$, Output: $100 \mathrm{Imp} / \mathrm{kWh}$

Specific characteristics

- 2 freely assessable impulse inputs
- relay output or transistor output
- integral wide-range power pack
- compatible with many types of transmitters
- max. input frequency 1 kHz
- only 18 mm construction width
- screw terminals can be pulled off
- can be parameterized via PC (AD-Studio)

Business data

Order number

AD-IS 102 GVC
AD-IS 102 GVCO
relay output
transistor output

Technical specifications

Input
NAMUR- transmitter $\quad 0 \ldots 1 \mathrm{kHz}$ (analysis of the NAMUR
Mechanical contact
Active voltage
Semiconductor switch

Relay output

Max. load AC
Max. load DC
Cycles AC- load
Cycles DC- load
Pulse duration

Transistor output (optional)

Max. load DC
Pulse duration

Supply

Voltage range
Power consumption

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Bolting torque screw terminals
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference values)
$0 \ldots 10 \mathrm{~Hz}$ (debounced input - Please note: low input bandwidth)
$0 \ldots 1 \mathrm{kHz}$ (12 V or 24 V)
$0 \ldots 1 \mathrm{kHz}$ (such as transistor / optocoupler)
$250 \mathrm{~V} / 2 \mathrm{~A}(\cos \mathrm{phi}=1)$
$50 \mathrm{~V} / 1 \mathrm{~A}$ (resistive load)
2 A (cos phi = 1): ca. 110000
1 A (resistive load): ca. 100000
0,5 ... 5 s
$30 \mathrm{~V} / 50 \mathrm{~mA}$
$0,05 \ldots 5 \mathrm{~s}$ (50% duty cycle at high frequency)

20 ... 253 V DC / 50 ... 253 V AC
max. 1,5 W / 2,6 VA
$18 \times 110 \times 134 \mathrm{~mm}$

$$
\text { IP } 20
$$

detachable terminal clamp $\left(2,5 \mathrm{~mm}^{2}\right.$
flex wire / $4 \mathrm{~mm}^{2}$ one wire)
$0,5 \mathrm{Nm}$
135 g
DIN rail 35 mm (EN 50022)
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements
Product family standard
EN 61010-1
Galvanic isolation, test voltages

Input / output	$3,75 \mathrm{kV}(1 \mathrm{~min})$.
Signal / supply unit	$3,75 \mathrm{kV}(1 \mathrm{~min})$.

Protection circuits

Input
Power supply
Relay output
Transistor output
$3,75 \mathrm{kV}$ (1 min.)
electrical surge protection
electrical surge and reverse current protection
no protection
electrical surge protection

Pulse Summator

Block and wiring diagram

Description

The pulse summator AD-IS 106 GVF adds pulses arriving at six inputs and gives out sum-proportional pulses via its relay or transistor outputs. During this, the input pulses can be ready in any sequence and also at the same time. Each input can be assessed freely, this way differently assessed pulses can also be added. For evaluation of the inputs only whole number factors or divisors are possible. Mechanical contacts, NAMUR transmitter, active signals and semi-conductor switches can be connected and evaluated. The device can be parameterized by the customer via the optional PC configuration software AD-Studio, however, it can also be delivered preset. The inputs and outputs as well as the power pack are galvanic separated with high insulation. The transfer function of the device is: $\mathrm{O}=$ output, $\mathrm{I}=$ input, $\mathrm{F}=$ factor, $\mathrm{D}=$ divisor $\mathrm{O}=\left(11^{*}(\mathrm{~F} 1 / \mathrm{D} 1)\right)+\left(12^{*}(\mathrm{~F} 2 / \mathrm{D} 2)\right)+\left(13^{*}(\mathrm{~F} 3 / \mathrm{D} 3)\right)+\left(14^{*}(\mathrm{~F} 4 / \mathrm{D} 4)\right)+$ $\left(15^{*}(\mathrm{~F} 5 / \mathrm{D} 5)\right)+\left(16^{*}(\mathrm{~F} 6 / \mathrm{D} 6)\right)$

Application

Adding of any quantity signals, such as through-flows or energy. Application example of energy balance: $11: 10001 \mathrm{mp} / \mathrm{kWh}, \mathrm{I2}: 10$ $\mathrm{Imp} / \mathrm{kWh}, 13: 1 \mathrm{Imp} / \mathrm{kWh}, 14: 300 \mathrm{Imp} / \mathrm{kWh}, \mathrm{I5:} 10 \mathrm{Imp} / \mathrm{kWh}, \mathrm{I6:} 5000$ $\mathrm{Imp} / \mathrm{kWh}, \mathrm{O}: 100 \mathrm{Imp} / \mathrm{kW}$

Specific characteristics

- 6 freely assessable impulse inputs
- relay output or transistor output
- integral wide-range power pack
- compatible with many types of transmitters
- max. input frequency 1 kHz
- only 33 mm construction width
- screw terminals can be pulled off
- can be parameterized via PC (AD-Studio)

Business data

Order number

> AD-IS 106 GVF
> AD-IS 106 GVFO
relay output
transistor output

Technical specifications	
Input	
NAMUR- transmitter	$0 \ldots 1 \mathrm{kHz}$ (analysis of the NAMUR values)
Mechanical contact	$0 \ldots 10 \mathrm{~Hz}$ (debounced input - Please note: low input bandwidth)
Active voltage	$0 \ldots 1 \mathrm{kHz}(12 \mathrm{~V}$ or 24 V)
Semiconductor switch	$0 \ldots 1 \mathrm{kHz}$ (such as transistor / optocoupler)
Relay output	
Max. load AC	$250 \mathrm{~V} / 2 \mathrm{~A}(\cos p h i=1)$
Max. load DC	$50 \mathrm{~V} / 1 \mathrm{~A}$ (resistive load)
Cycles AC- load	$2 \mathrm{~A}(\mathrm{cos}$ phi = 1) : ca. 110000
Cycles DC- Ioad	1A (resistive load): ca. 100000
Pulse duration	$0,5 \ldots 5 \mathrm{~s}$
Transistor output (optional)	
Max. load DC:	$30 \mathrm{~V} / 50 \mathrm{~mA}$
Pulse duration	$0,05 \ldots 5$ s (50% duty cycle at high frequency)
Supply	
Voltage range	20 ... 253 V DC / 50 ... 253 V AC
Power consumption	max. 2,2 W/3,3 VA
Housing	
Dimensions (WxHxD)	$33 \times 110 \times 134 \mathrm{~mm}$
Type of protection	IP 20
Connection method	detachable terminal clamp ($2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire)
Bolting torque screw terminals	$0,5 \mathrm{Nm}$
Weight	205 g
Manner of fastening	DIN rail 35mm (EN 50022)
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 Cl. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Galvanic isolation, test voltages	
Input / output	$3,75 \mathrm{kV}$ (1 min.)
Signal / supply unit	$3,75 \mathrm{kV}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Power supply	electrical surge and reverse current protection
Relay output	no protection
Transistor output	electrical surge protection

Pulse Summator

Block and wiring diagram

Description

The pulse divider AD-IU 214 GVC detects pulses arriving the input and gives out divided or multiplied pulses via its relay or transistor outputs. The input can be assessed freely. For evaluation of the input only whole number factors or divisors are possible. Mechanical contacts, NAMUR transmitter, active signals and semi-conductor switches can be connected and evaluated. The device can be parameterized by the customer via the optional PC configuration software AD-Studio, however, it can also be delivered preset. The inputs and outputs as well as the power pack are galvanic separated with high insulation. The transfer function of the device is: $\mathrm{O}=\left(I^{\star}(\mathrm{F} 1 / \mathrm{D} 1)\right) \mathrm{O}=$ output, $\mathrm{I}=$ input, F = factor, $\mathrm{D}=$ divisor

Application

Dividing of any quantity signals, such as through-flows or energy. Application example of energy balance: Input: 1000 Imp/kWh Output: 10 Imp/kWh

Specific characteristics

- freely assessable impulse input
- relay output or transistor output
- integral wide-range power pack
- compatible with many types of transmitters
- max. input frequency 1 kHz
- only 18 mm construction width
- screw terminals can be pulled off
- can be parameterized via PC (AD-Studio)

Business data

Order number

AD-IU 214 GVC
relay output
AD-IU 214 GVCO
transistor output

Technical specifications

Input
NAMUR- transmitter $0 \ldots 1 \mathrm{kHz}$ (analysis of the NAMUR values)
$0 \ldots 10 \mathrm{~Hz}$ (debounced input - Please note: low input bandwidth)
$0 \ldots 1 \mathrm{kHz}$ (12 V or 24 V)
$0 \ldots 1 \mathrm{kHz}$ (such as transistor / optocoupler)

Relay output

Max. load AC
Max. load DC
Cycles AC- load
Cycles DC- load
Pulse duration

Transistor output (optional)

Max. load DC
Pulse duration
Supply
Voltage range
Power consumption

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Bolting torque screw terminals
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference

Electrical safety requirements

Product family standard
EN 61010-1
Galvanic isolation, test voltages

Input / output	$4 \mathrm{kV}(1 \mathrm{~min})$.
Signal / supply unit	$4 \mathrm{kV}(1 \mathrm{~min})$.

Protection circuits
Input
Power supply
Relay output
Transistor output

4 kV (1 min.)
electrical surge protection
electrical surge and reverse current protection
no protection
electrical surge protection

Impulse Converter

Pulse Divider

Block and wiring diagram

Impulse Converter

Contact-Protection-Relay

Description

The contact protection pulse relay (switching amplifier, pulse shaper) serves preferably the protection of weak transducer contacts or the amplification of binary transducer signals. At the same time it transforms the prepared input signals into output pulses with constant, adjustable length. Typical input signals are reed contact signal transducers according to DIN-EN 60947-5-6 (NAMUR), voltage signals or resistance change. A heavy-duty and potential free contact is available at the output. In combination with a narrow 6.2 overall width, a high packing density is achieved.

Application

Pulse reception from water meters or flow monitors for measuring the flow rate. Amplification and contact protection of weak transducer signals (reed contacts, limit switches etc.), switching signal transfers in control circuits. Switching amplifiers for inductive and capacitive proximity switches according to Namur (DIN-EN 60947-5-6).

Business data

Order number

Accessory

DIN-rail connector

AD-KI 10 GX

AD-GX Connector

Impulse Converter

Contact-Protection-Relay

AD-KI 10 GX

Display and operating elements

Block and wiring diagram

Dimensions

Impulse Converter
 Contact-Protection-Relay
 AD-KI 10 GX

Circuit examples

Impulse control

$\square \square \square \square \square \square$

Impulse Converter

Description

The contact protection pulse relay (switching amplifier, pulse shaper) serves preferably the protection of weak transducer contacts or the amplification of binary transducer signals. At the same time it converts the prepared input signals to output pulses with constant, adjustable lengths (via trimmer at the front). Typical input signals are reed contacts, signal generator according to Namur (DIN EN 60947-5-6), TTL level, voltage signals or resistance changes. Heavy-duty and potential-free contacts are available at the output. The version AD-KI 100 GSO has wear-free transistor outputs, which are also galvanic separated via optocoupler. Further, the device has an electronic wide-range power pack, which supplies the AD-KI 100 GS(O) energy-efficient from a wide supply voltage range.

Application

Pulse reception of water meter or flow monitors for metering the throughflow quantity. Amplification and contact protection of weak transducer signals (reed contacts, limit switches, etc.), sound signal transmission in control circuits. Sound amplifier for inductive and capacitive proximity switches according to Namur (DIN 19234).

Specific characteristics

- support for all standard encoder types
- via front-trimmer adjustable output pulse length
- LEDs for signal display
- two independent potential-free relay output (AD-AI 100 GS)
- two independent semiconductor switches (AD-AI 100 GSO)
- wide range power supply
- narrow Design

Technical specifications	
Impulse input	
Min. pulse width	2 ms
Namur supply voltage	ca. $8,2 \mathrm{~V}$ DC
Logic level for Namur signals	Low < 1,2 mA ... High > 2,1 mA
Max. input voltage (active)	30 V DC
Logic level for active signals Type of contact	Low < 5 V ... High > 20 V potential-free
Pulse processing	
Adjustable output pulse length	0,2 ... 10 s ($0,5 \mathrm{~s}$ factory default)
Relay outputs	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	potential-free changeover
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 2 \mathrm{~A}$ AC, $\cos ($ phi) $=1$	600000
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4$	200000
At 24V/1 A DC	200000
Semiconductor outputs	
Max switching voltage	30 V DC
Max. switching current	50 mA DC
Working voltage at pullup	$10 . .30 \mathrm{~V}$ DC
Internal pullup	5 kOhm
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$3 \mathrm{VA} / 2 \mathrm{~W}$
Transmission behaviour	
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 5 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 81 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 115 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Business data

Order number

AD-KI 100 GS
AD-KI 100 GSO
with 2 independent relay outputs with 2 independent semiconductor outputs

Impulse Converter

Contact-Protection-Relay

AD-KI 100 GS-O

Technical specifications

EMC

Product family standard Emitted interference

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard
Overvoltage category
Pollution degree
Galvanic isolation, test voltages

Input / output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$4 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits Input	electrical surge protection Power supply
	protection against over voltage, over temperature and reverse polarity

${ }^{1)}$ During checking, slight signal deviations are possible.

Block and wiring diagram

Dimensions

Impulse Converter

Description

The contact protection pulse relay (switching amplifier) serves preferably the protection of weak transducer contacts or the amplification of binary transducer signals. The AD-KV $100 \mathrm{GS}(0)$ provides the input pulse, temporarily amplified $1: 1$, at the output. At the same time it converts the prepared input signals to output pulses with constant, adjustable lengths (via trimmer at the front). Typical input signals are reed contacts, signal generator according to Namur (DIN EN 60947-5-6), TTL level, voltage signals or resistance changes. Heavy-duty and potential-free contacts are available at the output. The version AD-KI 100 GSO has wear-free transistor outputs, which are also galvanic separated via opto-coupler. Further, the device has an electronic wide-range power pack, which supplies the AD-KV 100 GS(o) energy-efficient from a wide supply voltage range.

Application

Pulse reception of water meter or flow monitors for metering the throughflow quantity. Amplification and contact protection of weak transducer signals (reed contacts, limit switches, etc.), sound signal transmission in control circuits. Sound amplifier for inductive and capacitive proximity switches according to Namur (DIN 19234).

Specific characteristics

- support for all standard encoder types
- via front-trimmer adjustable output pulse length
- LEDs for signal display
- two independent potential-free relay output (AD-AI 100 GS)
- two independent semiconductor switches (AD-AI 100 GSO)
- wide range power supply
- narrow Design

Technical specifications	
Impulse input	
Min. pulse width	2 ms
Namur supply voltage	ca. 8,2 V DC
Logic level for Namur signals	Low 2,1 mA
Max. input voltage (active)	30 V DC
Logic level for active signals	Low 20 V
Type of contact	potential-free
Pulse processing	
Output pulse length	output follows input 1:1
Relay outputs	
Maximum switching load AC	250 V, 2 A
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	potential-free changeover
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	600000
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4$	200000
At 24V/1 A DC	200000
Semiconductor outputs	
Max switching voltage	30 V DC
Max. switching current	50 mA DC
Working voltage at pullup	10 ... 30 V DC
Internal pullup	5 kOhm
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$3 \mathrm{VA} / 2 \mathrm{~W}$
Transmission behaviour	
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 5 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 115 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Business data

Order number

AD-KV 100 GS
AD-KV 100 GS-O
mit zwei unabhängen
Relaisausgängen
mit zwei unabhängigen
Halbleiterausgängen

Impulse Converter

Contact Amplifier

Technical specifications

EMC

Product family standard Emitted interference

EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard
Overvoltage category
Pollution degree
Galvanic isolation, test voltages

Input / output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$4 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits Input	electrical surge protection Power supply
	protection against over voltage, over temperature and reverse polarity

${ }^{1)}$ During checking, slight signal deviations are possible.

Block and wiring diagram

Dimensions

Description

The coupling relays of series AD-KR 11 GX, AD-KR 12 GX (1-channel) and AD-KR 22 GX (2-channel) serve the galvanic separation and amplification of contact messages by means of a 24 V auxiliary voltage. At the front, the operating condition of the relay is indicated via a red illuminated diode. A free-wheeling diode and a reverse polarity protection are integral. Due to the narrow type of construction, with an overall housing width of only 6.2 mm , a high packing density is achieved.

Application

Galvanic separation and amplification of contact messages.

Business data

Order number	AD-KR 11 GX
	$A D-K R 12 G X$
	$A D-K R 22 ~ G X$

Technical specifications	
Input	
Nominal voltage	24 V DC
Voltage range	20 ... 30 V DC
Response time	6 ms
Fallback time	6 ms
Relay output	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Switching capacity AC	< 100 VA
Switching capacity DC	< 100 W
Switching frequency	$<1 \mathrm{~Hz}$
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 2 \mathrm{~A}$ AC, $\cos (\mathrm{phi})=1$	600000
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	200000
At 24V/1 A DC	200000
Contact construction	
AD-KR 11 GX	1 potential-free changeover
AD-KR 12 GX	2 potential free contacts
AD-KR 22 GX	2 potential free contacts
Housing	
Dimensions (WxHxD)	$6,2 \times 92 \times 101 \mathrm{~mm}^{3}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	DIN rail mounting 35mm, EN 50022
Environmental conditions	
Ambient temperature	$-10 \ldots 5{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots+70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input to relay	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Relay to relay	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$
Protection circuits	
Input	electrical surge protection

Display and operating elements

Block and wiring diagram

Dimensions

Designation	LED	Meaning
R1	red	Contact 1 state
R2	red	Contact 2 state

Contact 1 state
Contact 2 state

Indicator Light

Description

The signal lamp/fault indicator AD-LM 6 FE, for mounting at the front of the control panel, informs about errors or operating conditions via max. 6 LED signal transmitter. The lamps are equipped with red, green or yellow LEDs, mounted on plug bases. These can be exchanged after removing the front plate (other colours on request). To test their readiness for operation, a lamp test can be carried out at any time through pressing on the front panel, whereby all LEDs light up simultaneously. All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.).

Specific characteristics

- LED colours: green, yellow, orange, white, blue, red

Business data

Order number

AD-LM 6 FE

Block and wiring diagram

Dimensions

Description

The signal/fault indicator AD-LM 6 FE-Vario, for mounting at the front of the control panel, informs with 6 multicolour leds about errors or operating conditions with glowing or blinking. Because of the multicolour leds, it's not necessary to change the leds for changing the colour. So it's very easy to change the technical appliance. The AD-LM 6 Vario can catch and save short pulses at the inputs, and for resetting its possible to connect external buttons. The device comes with 12 independet inputs which are easy to allot to one or more leds. Its possible to generate a colour- change by changing the input. A keypress on the touch key at the front of the device, generates a light test for all leds (all leds white). The AD-LM 6 Vario has a RS485 bus interface, which can used for the configuration over the AD- Studio (PC). All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.). This signal/fault indicator is also available with no physical inputs as a bus version (AD-6 Vario LMB). This can be controlled by the remote terminal block AD-AB 32 or by an external master.

Application

Indicate signal/fault status of machines or plants.

Specific characteristics

- detachable terminal clamps
- multicolour leds
- configuration by PC
- 12 independent inputs
- short-circuit proof feeding voltage
- external terminal- block for hat rail available

Business data

Order number

AD-LM 6 FE-Vario
AD-LMB 6 FE-Vario

Accessory

AD-AB 12/24/32 WG
standard version with physical inputs bus- version without physical inputs
terminal block for hat rail available with up to 32 inputs (only adaptable with the bus version) see: Datasheet AD-AB 12/24/32

Technical specifications

Active inputs

Voltage range
5... 30 V DC

Input resistance

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Feeding voltage for contacts
Voltage
Strength
Housing
Dimensions (WxHxD)
Front panel cut out
Protection class panel
Protection class connection
Connection method
Terminals, wire cross section
Manner of fastening
Weight
Environmental conditions
Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
Electrical safety requirements
Product family standard
RS485- Bus
Max. attendance
Max. length of bus
Bus termination
Wiring

EN 61010-1
$>45 \mathrm{kOhm}$

50 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
22 ... 253 V DC
230 V AC / 24 V
3,2VA / 1,7W

4,8 ... 5,2 V DC
max. 1 mA
$72 \times 72 \times 71 \mathrm{~mm}$
$68 \times 68 \mathrm{~mm}$
IP 54
IP 20
detachable terminal clamp
$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule
$11,5 \mathrm{~mm}^{2}$ one wire
Panel-mount-case
145 g
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

32
100 m
120 Ohm (both sites of the bus)
bus topology

Indicator Light

Technical specifications

Terminal assignment

Clamp	connection name
1	supply voltage
2	supply voltage
3	contact supply
4	contact supply
5	input for light test
6	ground
7	ground
8	ground
9	RS485 A
10	RS485 B
11	input 1
12	input 2
13	input 3
14	input 4
15	input 5
16	input 6
17	input 7
18	input 8
19	input 9
20	input 10
21	input 11
22	input 12

Block and wiring diagram

Dimensions

Indicator Light

Description

The signal lamp/fault indicator AD-LM 8 FE, for mounting at the front of the control panel, informs about errors or operating conditions via max. 8 LED signal transmitter. The lamps are equipped with red, green or yellow LEDs, mounted on plug bases. These can be exchanged after removing the front plate (other colours on request). To test their readiness for operation, a lamp test can be carried out at any time through pressing on the front panel, whereby all LEDs light up simultaneously. All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.).

Specific characteristics

- LED colours: green, yellow, orange, white, blue, red

Business data

Order number
AD-LM 8 FE

Block and wiring diagram

Technical specifications

Input
Input $10 \ldots 30 \mathrm{~V}$ DC

Input power at 10 V
Input power at 30 V
Housing

Dimensions (WxHxD)	$96 \times 96 \times 71 \mathrm{~mm}$
Manner of fastening	Panel-mount-case
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Connection method	Abziehbare Klemmen
Protection class front plate	IP 40
Protection class connection	IP 20
Weight	260 g

Environmental conditions
Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference

Electrical safety requirements

Product family standard
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
$<80 \mathrm{~mW}$ per input
< 350 mW per input
$96 \times 96 \times 71 \mathrm{~mm}$
Panel-mount-case
92x92mm
Abziehbare Klemmen
P 40
-
g

EN 61010-1

Dimensions

Description

The signal/fault indicator AD-LM 8 FE-Vario, for mounting at the front of the control panel, informs with 8 multicolour leds about errors or operating conditions with glowing or blinking. Because of the multicolour leds, it's not necessary to change the leds for changing the colour. So it's very easy to change the technical appliance. The AD-LM 8 Vario can catch and save short pulses at the inputs, and for resetting its possible to connect external buttons. The device comes with 16 independet inputs which are easy to allot to one or more leds. Its possible to generate a colour- change by changing the input. A keypress on the touch key at the front of the device, generates a light test for all leds (all leds white). The AD-LM 8 Vario has a RS485 bus interface, which can used for the configuration over the AD- Studio (PC). All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.). This signal/fault indicator is also available with no physical inputs as a bus version (ADLMB 8 Vario). This can be controlled by the remote terminal block AD$A B 32$ or by an external master.

Application

Indicate signal/fault status of machines or plants.

Specific characteristics

- detachable terminal clamps
- multicolour leds
- configuration by PC
- 16 independent inputs
- short-circuit proof feeding voltage
- external terminal-block for hat rail available

Business data

AD-LM 8 FE-Vario;AD-LMB 8 FEVario

Technical specifications

Active inputs

Voltage range
5 ... 30 VDC
Input resistance

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Feeding voltage for contacts
Voltage
Strength

Relay

Max. load AC
Max. load DC
Cycles AC- load
Cycles DC- load

Housing

Dimensions (WxHxD)	$96 \times 96 \times 71 \mathrm{~mm}$
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule
	$11,5 \mathrm{~mm}^{2}$ one wire
Manner of fastening	Panel-mount-case
Weight	305 g

Environmental conditions

Ambient temperature

Storage and transport

EMC

Product family standard
Emitted interference
Electrical safety requirements
Product family standard
RS485- Bus
Max. attendance
Max. length of bus
Bus termination
Wiring
>45 kOhm

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
22 ... 253 V DC
230 V AC / 24 V
$3,0 \mathrm{VA} / 1,3 \mathrm{~W}$

4,8 ... 5,2 V DC
max. 1 mA
$250 \mathrm{~V} / 2 \mathrm{~A}(\cos \mathrm{phi}=1)$
$50 \mathrm{~V} / 0,5 \mathrm{~A}$ (resistive load)
ca. $100000(\cos p h i=1)$
ca. 100000 (resistive load)

96x96x71 mm
$92 \times 92 \mathrm{~mm}$
IP 20
detachable terminal clamp
$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule
/ $1,5 \mathrm{~mm}^{2}$ one wire
305 g
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
EN 61010-1
32
100 m
120 Ohm (both sites of the bus)
bus topology

Indicator Light

Technical specifications

Terminal assignment

Clamp	connection name
1	supply voltage
2	supply voltage
3	ground
4	ground
5	ground
6	RS485 A
7	RS485 B
8	contact supply
9	contact supply
10	input for light test
11	input 1
12	input 2
13	input 3
14	input 4
15	input 5
16	input 6
17	input 7
18	input 8
19	input 9
20	input 10
21	input 11
22	input 12
23	input 13
24	input 14
25	input 15
26	input 16
27	relay NO
28	relay COM
29	relay NC

Block and wiring diagram

Dimensions

Indicator Light

Description

The signal lamp/fault indicator AD-LM 12 FE, for mounting at the front of the control panel, informs about errors or operating conditions via max. 12 LED signal transmitter. The lamps are equipped with red, green or yellow LEDs, mounted on plug bases. These can be exchanged after removing the front plate (other colours on request). To test their readiness for operation, a lamp test can be carried out at any time through pressing on the front panel, whereby all LEDs light up simultaneously. All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.).

Specific characteristics

- LED colours: green, yellow, orange, white, blue, red

Business data

Order number
AD-LM 12 FE

Block and wiring diagram

Technical specifications

Input

Input
Input power at 10 V
Input power at 30 V
Housing

Dimensions (WxHxD)	$144 \times 72 \times 71 \mathrm{~mm}$
Manner of fastening	Panel-mount-case
Front panel cut out	$140 \times 68 \mathrm{~mm}$
Connection method	Abziehbare Klemmen
Protection class front plate	IP 40
Protection class connection	IP 20
Weight	220 g

Environmental conditions

Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference

Electrical safety requirements

Product family standard

10 ... 30 V DC
< 80 mW per input
< 350 mW per input
$144 \times 72 \times 71 \mathrm{~mm}$
Panel-mount-case
$140 \times 68 \mathrm{~mm}$
Abziehbare Klemmen
40

220 g
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

EN 61010-1

Dimensions

Description

The signal/fault indicator AD-LM 12 FE-Vario, for mounting at the front of the control panel, informs with 12 multicolour leds about errors or operating conditions with glowing or blinking. Because of the multicolour leds, it's not necessary to change the leds for changing the colour. So it's very easy to change the technical appliance. The AD-LM 12 Vario can catch and save short pulses at the inputs, and for resetting its possible to connect external buttons. The device comes with 24 independet inputs which are easy to allot to one or more leds. Its possible to generate a colour- change by changing the input. A keypress on the touch key at the front of the device, generates a light test for all leds (all leds white). The AD-LM 12 Vario has a RS485 bus interface, which can used for the configuration over the AD- Studio (PC). All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.). This signal/fault indicator is also available with no physical inputs as a bus version (AD-12 Vario LMB). This can be controlled by the remote terminal block AD-AB 32 or by an external master.

Application

Indicate signal/fault status of machines or plants.

Specific characteristics

- detachable terminal clamps
- multicolour leds
- configuration by PC
- 24 independent inputs
- short-circuit proof feeding voltage
- external terminal- block for hat rail available

Business data

Order number

AD-LM 12 FE-Vario

 AD-LMB 12 FE-Vario
Accessory

AD-AB 12/24/32 WG
standard version with physical inputs bus- version without physical inputs
terminal block for hat rail available with up to 32 inputs (only adaptable with the bus version) see: Datasheet AD-AB 12/24/32

Technical specifications

Active inputs

Voltage range
5 ... 30 VDC
Input resistance
$>45 \mathrm{kOhm}$

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Feeding voltage for contacts
Voltage
Strength

Relay

Max. load AC
Max. load DC
Cycles AC- load
Cycles DC- load

Housing

Dimensions (WxHxD)
Front panel cut out
Protection class panel
Protection class connection
Connection method
Manner of fastening
Terminals, wire cross section
Weight
Environmental conditions
Ambient temperature
Storage and transport
EMC
Product family standard
Emitted interference
Electrical safety requirements
Product family standard
RS485- Bus
Max. attendance
Max. length of bus
Bus termination
Wiring

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
22 ... 253 V DC
230 V AC / 24 V
7,0VA / 3,8W

4,8 ... 5,2 V DC
max. 1 mA
$250 \mathrm{~V} / 2 \mathrm{~A}(\cos \mathrm{phi}=1)$
$50 \mathrm{~V} / 0,5 \mathrm{~A}$ (resistive load)
ca. $100000(\cos p h i=1)$
ca. 100000 (resistive load)
$144 \times 72 \times 71 \mathrm{~mm}$
$140 \times 68 \mathrm{~mm}$
IP 54
IP 20
detachable terminal clamp
Panel-mount-case
$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule $11,5 \mathrm{~mm}^{2}$ one wire
260 g
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

EN 61010-1

32
100 m
120 Ohm (both sites of the bus)
bus topology

Indicator Light

Technical specifications	18	
Terminal assignment		19
Clamp	connection name	20
1	supply voltage	21
2	supply voltage	22
3	contact supply	23
4	contact supply	24
4	input for light test	25
5	ground	26
6	ground	27
7	ground	28
8	relay NO	29
9	relay COM	30
10	relay NC	31
11	RS485 A	32
12	RS485 B	33
13	input 1	34
14	input 2	35
15	input 3	36
16	input 4	37
17		

input 5
input 6
input 7
input 8
input 9
input 10
input 11
input 12
input 13
input 14
input 15
input 16
input 17
input 18
input 19
input 20
input 21
input 22
input 23
input 24

Dimensions

Block and wiring diagram

Indicator Light

Description

The signal lamp/fault indicator AD-LM 16 FE, for mounting at the front of the control panel, informs about errors or operating conditions via max. 16 LED signal transmitter. The lamps are equipped with red, green or yellow LEDs, mounted on plug bases. These can be exchanged after removing the front plate (other colours on request). To test their readiness for operation, a lamp test can be carried out at any time through pressing on the front panel, whereby all LEDs light up simultaneously. All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.).

Specific characteristics

- LED colours: green, yellow, orange, white, blue, red

Business data

Order number AD-LM 16 FE

Block and wiring diagram

Technical specifications	
Input	
Input	$10 \ldots 30 \mathrm{~V}$ DC
Input power at 10 V	$<80 \mathrm{~mW}$ per input
Input power at 30 V	$<350 \mathrm{~mW}$ per input
Housing	
Dimensions (WxHxD)	$96 \times 96 \times 71 \mathrm{~mm}$
Manner of fastening	Panel-mount-case
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Connection method	Abziehbare Klemmen
Protection class front plate	IP 40
Protection class connection	IP 20
Weight	260 g
Environmental conditions	$-10 \ldots 50^{\circ} \mathrm{C}$
Ambient temperature	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
Storage and transport	
EMC	EN $61326-1$
Product family standard	EN 55011, CISPR11 CI. B, Gr. 1
Emitted interference	
Electrical safety requirements	
Product family standard	EN $61010-1$

Description

The signal/fault indicator AD-LM 16 FE-Vario, for mounting at the front of the control panel, informs with 16 multicolour leds about errors or operating conditions with glowing or blinking. Because of the multicolour leds, it's not necessary to change the leds for changing the colour. So it's very easy to change the technical appliance. The AD-LM 16 Vario can catch and save short pulses at the inputs, and for resetting its possible to connect external buttons. The device comes with 32 independet inputs which are easy to allot to one or more leds. Its possible to generate a colour- change by changing the input. A keypress on the touch key at the front of the device, generates a light test for all leds (all leds white). The AD-LM 16 Vario has a RS485 bus interface, which can used for the configuration over the AD- Studio (PC). All messages can be labelled with the aid of inserted strips (i.e. paper, foil etc.). This signal/fault indicator is also available with no physical inputs as a bus version (AD-16 Vario LMB). This can be controlled by the remote terminal block AD-AB 32 or by an external master.

Application

Indicate signal/fault status of machines or plants.

Specific characteristics

- detachable terminal clamps
- multicolour leds
- configuration by PC
- 32 independent inputs
- short-circuit proof feeding voltage
- external terminal-block for hat rail available

Business data

Order number

AD-LM 16 FE-Vario
AD-LMB 16 FE-Vario

Accessory

AD-AB 12/24/32 WG
standard version with physical inputs bus- version without physical inputs
terminal block for hat rail available with up to 32 inputs (only adaptable with the bus version) see: Datasheet AD-AB 12/24/32

Technical specifications

Active inputs

Voltage range
5... 30 V DC

Input resistance

Supply

Voltage range AC
Voltage range DC
Nominal voltage AC / DC
Power consumption AC / DC
Feeding voltage for contacts
Voltage
Strength

Relay

Max. load AC
Max. load DC
Cycles AC- load
Cycles DC- load

Housing

Dimensions (WxHxD)	$96 \times 96 \times 71 \mathrm{~mm}$
Front panel cut out	$92 \times 92 \mathrm{~mm}$
Protection class panel	IP 54
Protection class connection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule
	$/ 1,5 \mathrm{~mm}^{2}$ one wire
Manner of fastening	Panel-mount-case
Weight	305 g

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference
Electrical safety requirements
Product family standard
RS485- Bus
Max. attendance
Max. length of bus
Bus termination
Wiring
>45 kOhm

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
22 ... 253 V DC
230 V AC / 24 V
4,0 VA / 1,9 W

4,8 ... 5,2 V DC
max. 1 mA
$250 \mathrm{~V} / 2 \mathrm{~A}(\cos p h i=1)$
$50 \mathrm{~V} / 0,5 \mathrm{~A}$ (resistive load)
ca. $100000($ cos phi $=1)$
ca. 100000 (resistive load)
$96 \times 96 \times 71 \mathrm{~mm}$
$92 \times 92 \mathrm{~mm}$
IP 54
IP 20
detachable terminal clamp
$1,0 \mathrm{~mm}^{2}$ Strand with wire end ferrule
/ $1,5 \mathrm{~mm}^{2}$ one wire
305 g
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

EN 61010-1

32
100 m
120 Ohm (both sites of the bus)
bus topology

Indicator Light

AD-LM 16 FE-Vario

Technical specifications	22	
Terminal assignment	connection name	23
Clamp	supply voltage	24
1	supply voltage	25
2	ground	26
3	ground	27
4	ground	28
5	RS485 A	29
6	RS485 B	30
7	contact supply	31
8	contact supply	32
9	input for light test	33
9	input 1	34
10	input 2	35
11	input 3	36
12	input 4	37
13	input 5	38
14	input 6	39
15	input 7	40
16	input 8	41
17	input 9	42
18	input 10	43
19	input 11	44
20		45
21		

Block and wiring diagram

Dimensions

Description

The detached connection block AD-AB 12/24/32 has been specially developed for the LMB Vario series of devices. The bus version of the Vario illuminated indicator has no input terminals and is therefore controllable exclusively via the RS485 bus. The detached connection block AD-AB 12/24/32 can be connected at this bus connection. This bus connection has active inputs, which are transmitted to the indicator light via its RS485 bus. With this, the Vario illuminated indicator can be configured via the configuring software ADStudio and behaves as if it had physical inputs. If the illuminated indicator is located in the control cabinet door or in the control centre, then the connection block can be easily mount on the hat rail in the control cabinet on site. The external connection block is available in three different variants. With 12,24 and 32 inputs. The connection block has a short-circuit-proof supply voltage, with which contacts can also be supplied and therefore queried. Furthermore, an efficient switching power supply has been fitted, which works in a wide supply voltage range.

Application

Application in connection with the Vario bus illuminated indicators (ADLMB 6, AD-LMB 12, AD-LMB 16). When messages are to be indicated spatially separated from the control cabinet, a substantial amount of wiring can be saved here.

Technical specifications

Active inputs

Voltage range	$5 \ldots 30 \mathrm{VDC}$
Input resistance	> 45 kOhm
Supply	
Supply voltage	$20 . . .253 \mathrm{~V}$ AC/DC
Max. power consumption	0,3W / 0,6VA
Feeding voltage for contacts	
Voltage	4,8 ... 5,2 V DC
Strength	max. 1 mA
RS485 Bus	
Cable length (screened)	max. 100 m (terminator is integrated)
Send interval input data	ca. 100 ms
Housing	
Dimensions (WxHxD)	$113 \times 82 \times 54 \mathrm{~mm}$
Type of protection	IP 10
Connection method	terminal clamp / optionally detachable terminal clamp
Manner of fastening	DIN rail housing
Calmping torque- RM 5	0,5 Nm
Clamping torque- RM 3,81	0,25 Nm
Weight	150 g
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
LEDs	
Power- LED (green)	On: power supply OK
	Off: power supply error
Data- LED (yellow)	blinking: data connection OK On/Off: data connection error

Specific characteristics

- available with 12,24 or 32 inputs
- RS485 Bus connection to the indicator lights
- Allpower supply
- short-circuit proof feeding voltage
- mouting on DIN rail

Business data

Order number

AD-AB 12	(12 Inputs)
AD-AB 24	(24 Inputs)
AD-AB 32	(32 Inputs)

Indicator Light
 External Terminal Block

Technical specifications	1	
Terminal assignment		1
Clamp	connection name	1
U1	supply voltage	1
U2	supply voltage	1
B1	RS485 Bus clamp B	1
B2	RS485 Bus clamp A	1
G	GND of the device	2
SP	Supply Voltage for contacts	2
1	input 1	22
2	input 2	23
3	input 3	2
4	input 4	2
5	input 5	2
6	input 6	2
7	input 7	2
8	input 8	2
9	input 9	30
10	input 10	3
11	input 11	32
12	input 12	

connection name
supply voltage 16

RS485 Bus clamp B $\quad 19$
RS485 Bus clamp A 20
GND of the device
Supply Voltage for contacts
input 1
input 3
input 4
inuts
27
28
29
30
31
32

Dimensions

Description

The overvoltage protection elements AD-BS1 ST, AD-BS2 ST and ADBS3 ST have been designed for the protection of low voltage signal lines (e.g. $0 / 4 \ldots 20 \mathrm{~mA}, 0 / 2 \ldots . .10 \mathrm{~V}$ etc.). The overvoltage pulses can be caused e.g. by lightning strikes, switching operations in the power grid, inductive interference or static discharges. A special L-type is also available, which has inductors instead of resistors as longitudinal current limitation. This allows the voltage drop at the longitudinal protection to be significantly reduced and the signal to be protected to be less loaded. Due to the plug-in module design, the overvoltage protection elements can be easily replaced after response or during revision. After the protective element has been removed, the signal path is interrupted. Thus, operation without a protective element is not possible.

Application

Protection of technology connected to low voltage signal lines against overvoltage surges.

Specific characteristics

- Plug-in module technology
- Standard Phoenix plug-in socket

Business data

Order number

AD-BS 1 ST
AD-BS 2 ST

AD-BS 2 ST-L

AD-BS 3 ST

AD-BS 3 ST-L

Grobschutz ohne
Längsstrombegrenzung
Grob- und Feinschutz mit Längsstrombegrenzung durch Widerstände
Grob- und Feinschutz mit Längsstrombegrenzung durch Induktivitäten
Grob- und Feinschutz mit Querspannungsbegrenzung und Längsstrombegrenzung durch Widerstände
Grob- und Feinschutz mit Querspannungsbegrenzung und Längsstrombegrenzung durch Induktivitäten

Technical specifications

General

Weight	$\sim 120 \mathrm{~g}$
Mounting type	DIN rail 35 mm 35 mm
Ambient temperature	$-20 \ldots 60^{\circ} \mathrm{C}$
Type of protection	IP20
Connection method	screw clamp
Conductor cross section	$2,5 \mathrm{~mm}^{2}$ Strand with wire end ferrule
	$14 \mathrm{~mm}^{2}$ one wire

AD-BS 1 ST

Rated voltage wire to earth
90 V
Output voltage limitation
Series resistance per wire
at $1 \mathrm{kV} / \mathrm{ms}:<450 \mathrm{~V}$
0 Ohm
Max rated current per wire
2 A
Rated leakage current per wire 10 kA ($8 / 20$ pulse)
Response time $<100 \mathrm{~ns}$
$\begin{array}{lr}\text { AD-BS } 2 \text { ST } \\ \text { Rated voltage wire to earth } & 22 \mathrm{~V} \\ \text { Protective voltage wire to earth } 25 \mathrm{~V}\end{array}$
Protective voltage wire to earth 25 V
Series resistance per wire $\quad 22,1 \mathrm{Ohm}$
Max rated current per wire 100 mA
Rated leakage current per wire 10 kA ($8 / 20$ pulse)

Response time	$<0,10 \mathrm{~ns}$
Other protection voltages	$33 \mathrm{~V}, 50 \mathrm{~V}$
Line inductance for L-type	40 uH

AD-BS 3 ST

Rated voltage wire to earth 22 V
Cross-voltage limitation 22 V
(nominal) Wire against wire
Protective voltage wire to earth 25 V
Cross-voltage limitation 25 V
(protection) wire against wire
Series resistance per wire $\quad 22,1 \mathrm{Ohm}$
Max rated current per wire 100 mA
Rated leakage current per wire 10 kA ($8 / 20$ Impuls)

Response time	$<0,1 \mathrm{~ns}$
Other protection voltages	$33 \mathrm{~V}, 50 \mathrm{~V}$

Line inductance for L-type 40 uH

Overvoltage Protection

AD-BS 1 ST

Signal Line Protection
AD-BS 2 ST
AD-BS 3 ST

Block and wiring diagram

AD-BS 1 ST

AD-BS 2 ST

AD-BS 3 ST

AD-BS 2 ST-L

AD-BS 3 ST-L

Attention

Input side is where overvoltage is expected (remote line). Output side points to the protecting installation. Earth connection is to be connected directly to the designating terminal. Avoid capacitive and inductive couplings, i.e. do not lay unprotected lines near the protected lines.

Circuit examples

AD-SV 20 GS

Description

With the power supplies AD-SV 20 GS (1-channel) and AD-SV 40 GS (2-channel), external sensors and devices with a filtered DC voltage of about 24 V DC with max. 50 mA can be supplied. The output voltage is electrically isolated from the supply voltage and the second channel. For each channel, two different electronic current limiters are available, which can be alternatively selected via terminals. Due to the highly efficient integrated electronic wide range power supply high output loads are achieved with low power consumption and heating.

Application

For an isolated power supply of external sensors etc. Devices with a DC separation, eg. 2 - or 3-wire transmitter

Specific characteristics

- Wide range power supply: 90 ... 253 V AC or DC
- galvanically isolated output voltages
- Two different current limits per channel
- Current limit selectable via terminals
- Single-channel (AD-SV 20 GS) and two channels (AD-SV 40 GS) available

Business data

Order number

AD-SV 20 GS
AD-SV 40 GS

1-channel

Technical specifications

Output 1

Nominal voltage	24 V DC
Open-circuit voltage	ca. 27 V DC
Full load voltage	ca. 21 V DC

Full load voltage
Current limit
Residual ripple

Output 2

Nominal voltage
Open-circuit voltage
Full load voltage
Current limit
Residual ripple

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC
Transmission behaviour
Temperature influence

Housing

Dimensions $(W \times H x D)$	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 120 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference
Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2

Galvanic isolation, test voltages
Output 1 / output $2 \quad 2 \mathrm{kV}$ (1 min.)

Outputs / power supply $\quad 4 \mathrm{kV}(1 \mathrm{~min}$.

Protection circuits

Output protection against overvoltage and
Power supply short circuit
protection against over voltage, over temperature and reverse polarity
${ }^{1)}$ During electromagnetic disturbance minor changes in output signal are possible.

Power Supply

AD-SV 40 GS

Block and wiring diagram

Dimensions

Circuit examples

Special Functions

Power Supply

Description

The power converter AD-SV 1224 GL is for increasing an available low supply voltage to a substantially higher value. An upward regulation switching with a high degree of sufficiency enables the operation of electric measuring converters, which demand a supply voltage of at least 20 V DC. An electric over current protection switches the device securely off during a short circuit at the output. To reset this fuse, a brief voltage separation at the input is necessary.

Application

A mains supply is not always available at all installation sites. In such cases, one resorts to battery voltages with 12V DC, which are also possibly charged by solar energy. Almost all devices of the AD-device family work from a supply voltage of 20 V DC upwards and therefore can also be operated in remote areas. This also enables operation in vehicles with 12 V board voltage.

Specific characteristics

- Increasing a voltage supply to a level required for operating a device.
- It is not essential that the earth lead for the load is acquired from the AD-SV 1224 GL. The earth connection can also be carried out directly at the feeding voltage source.
- Electronic overload protection with reverting characteristic and manual hold.

Business data

AD-SV 1224 GL

Technical specifications	
Input	
Input voltage range	$11 . .15 \mathrm{~V}$ DC
Output	
Output voltage range	$20 . . .30 \vee D C$
Max. load	5 W
Housing	
Dimensions (WxHxD)	$18 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ Litze / $4 \mathrm{~mm}^{2}$ Draht
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm Normschiene
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (Betauung vermeiden)
EMC	
Product family standard	EN 61326-1
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Galvanic isolation	
Input/output	KEINE Trennung! Durchgehende Masseleitung.
Protection circuits	
Input	Schutz gegen Überspannung, Überstrom
Output	Schutz gegen Überspannung, Überstrom

Block and wiring diagram

Dimensions

Special Functions

Setpoint Encoder

Description

With the setpoint encoder AD-SWG 211 GS setpoints in the form of analog signals can be set by adjustable Coding switch. The range is 0 ... 99% of the final value and is set on the front in steps of 1%. The output is galvanically isolated from the supply voltage and up to the maximum resistance independent of the connected load. It can be selected between current or voltage output. Due to the highly efficient integrated wide range power supply high output loads are achieved with low power consumption.

Application

For presetting analog set values in measurement and control systems, for simulating analog measurement signals, etc.

Specific characteristics

- frontal coding switch for setpoint
- Current or voltage output
- Wide range power supply

Business data

Order number

ADSWG211GS23
ADSWG211GS43
ADSWG211GS13
AD-SWG 211 GS

Technical specifications	
Coding switch	
Setting range	0 ... 99% (1\%-steps)
Output current	
Output range	0 ... $20 \mathrm{~mA}, 4$... $20 \mathrm{~mA}{ }^{\text {] }}$
Max. burden	500 Ohm
Residual ripple	20μ Ass
Output voltage	
Output range	$0 \ldots 10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}{ }^{\text {\% }}$
Min. burden	500 Ohm
Residual ripple	50 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	$2 \mathrm{VA} / 1 \mathrm{~W}$
Transmission behaviour	
Accuracy	< 0,2\%
Temperature influence	$50 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 200 \mathrm{~ms}$
Housing	
Dimensions ($\mathrm{W} \times \mathrm{HxD}$)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{2}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Signal / supply unit	4 kV (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection
${ }^{1}$) Specity signal range in plain text when ordering.	
${ }^{2}$) During electromagnetic disturbance minor	langes in output signal are possible.

Special Functions

Setpoint Encoder

AD-SWG 211 GS

Block and wiring diagram

Dimensions

Special Functions

Incremental Setpoint Generator

Description

The incremental setpoint generator is used to preset an analog value (0 / $4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$) with the aid of external control signals. The output range from $0-100 \%$ is divided into 256 steps. The output change by one step is carried out by an input pulse of at least 64 ms in length. With a continuous signal, there is an automatic change approx. every 282 ms by one step (ramp function). An infinite ramp function when the signal direction is reversed at the range limits can be configured. Potential-free contacts as well as active voltages of $5-30 \mathrm{~V}$ DC can be used as input pulse sources. The signal setting can also be made with the two device buttons. Pressing both buttons at the same time for approx. 2 seconds saves the instantaneous value as the start value after a supply voltage failure. The storage process is acknowledged by blanking the operating voltage LED. There is a red LED for each signal direction input, which indicates the active input status. During the ramp function, the respective LED flashes according to the direction of change. The output signal is galvanically separated from the active inputs and also from the supply voltage.
The following can be configured using AD Studio software:

- Number of steps (2 ... 1000)
- Time interval per step (10 ... 2000 ms)
- Area limits
- Ramp function
- Signal start values

Application

Presetting of analog values by means of external control signals (contact or DC voltage).

Business data

Order number
AD-ISW 100 GS

Technical specifications

Contact	
Feeding voltage	5 V
Current limit	$\sim 3 \mathrm{~mA}$
Input voltage	
Input level	$0 / 5 \ldots 30 \mathrm{~V}$
Input resistance	3 kOhm
Input signals	
Minimum pulse width	64 ms
Contact debouncing	50 ms
Ramp start	> 2000 ms
Step time	$282 \mathrm{~ms}{ }^{17}$
Step size	1/256 ${ }^{\text {\% }}$
Output current	
Output range	$0 . .20 \mathrm{~mA}$; $4 . .20 \mathrm{~mA}$)
Max. burden	500 Ohm
Max. residual ripple	40μ Ass
Open-circuit voltage	< 13 V
Output voltage	
Output range	$0 \ldots . .10 \mathrm{~V} ; 2 \ldots . .10 \mathrm{~V}{ }^{\text {² }}$
Min. burden	10 kOhm
Max. residual ripple	20 mVss
Current limit	$<40 \mathrm{~mA}$
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage DC	24 V DC
Input power AC/DC	1,7 VA / 0,8 W
Signal behavior	
Resolution	11 Bit
Basic accuracy	<0,2\%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)

Special Functions

Incremental Setpoint Generator

Technical specifications

EMC
Product family standard Emitted interference

EN 61326-1 ${ }^{2}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2
Galvanic isolation, test voltages

Contact / Output
Active input / Output $\quad 1,0 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)

Protection circuits

Input electrical surge protection
Output electrical surge protection
Power supply Protection against overvoltage reverse polarity

1) In/Out signals can be configured with AD studio software.
2) Slight signal deviations are possible during interference.

Display and operating elements

On Power supply LED (green)
lights up in normal operation
Blanking when signal storage
(+) Direction key for signal change
(-) Direction key for signal change
$E(+)$ red LED for signal direction pulse
E(-) red LED for signal direction pulse
AD-UART Communication interface for configuration

Block and wiring diagram

Dimensions

Isolation Amplifier

Isolation Amplifier With Nominal Value Selector

Description

The VARIO-isolation amplifier AD-TV 32 GL serves the galvanic separation, conversion and amplification of DC current and voltage signals ($0 / 4-20 \mathrm{~mA}$ and $0 / 2-10 \mathrm{~V} \mathrm{DC}$). The signal dimensions are adjustable at the front. The starting and end values can here be adjusted independent of each other. Input, output and the supply voltage are separate from each other with high insulation. An integral electronic wide range power pack with a high degree of effectiveness allows operation in a supply range of $20 \ldots 253 \mathrm{~V}$ DC or $50 \ldots 253 \mathrm{~V}$ AC. Additionally, a nominal value can be specified via switch at the front at the output. The input measuring signal is decoupled and without influence during this. The nominal value at the output, which can be activated and adjusted via a potentiometer at the front.

Application

Conversion, burden amplification and galvanic decoupling of active DCcurrent and voltage signals with additional manual / automatic operation via a nominal value specification, which can be activated.

Specific characteristics

- Front panel switch for switching between manual and automatic operation
- Value setting for manual operation by front-face potentiometer

Business data

Order number
AD-TV 32 GL

Technical specifications	
Input current	
Measuring range	0/4... 20 mA
Input resistance	85 Ohm
Input voltage	
Measuring range	0/2 ... 10 V
Input resistance	> 100 kOhm
Output current	
Output range	0/4 ... 20 mA
Max. burden	500 Ohm
Residual ripple	50μ Ass
Output voltage	
Output range	0/2 ... 10 V
Min. burden	> 10 kOhm
Residual ripple	50 mVss
Setpoint setting	
Front mounted potentiometer	0... 100%
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Voltage range DC	$20 . . .253 V$ DC
Nominal voltage AC / DC	230 V AC / 24 V DC
Power consumption AC / DC	2,3 VA / 1W
Transmission behaviour	
Basic accuracy	<0,2 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	$\sim 20 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$18 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	-10 ... $70^{\circ} \mathrm{C}$ (no condensation)
EMC	
Product family standard	EN 61326-1 ${ }^{1 \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Galvanic isolation, test voltages	
Input / output	$3,75 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	electrical surge and reverse current protection

Dimensions

Supply Isolation Amplifier

Isolation Ampilifer With Reference Function

Description

The set value buffer amplifier AD-TV 320 GS serves the galvanic separation, transformation and amplification of DC current and voltage signals ($0 / 4-20 \mathrm{~mA}$ or $0 / 2-10 \mathrm{~V}$). The device has additionally a transmitter supply and a set value function, which can be switched on. The activation of the set value function is carried out selectable with a brief depression of the key at the front or with a control signal (24 V active or contact) at the remote control input. Any output set value is set with the potentiometer at the front. Activation of zero trimmers and full trimmers is possible with longer depression of the set value key. With this, the signal magnitudes are adjustable in the range of $\pm 25 \%$. An integral electronic wide range power pack allows operation in a wide supply area.

Application

Transformation, burden amplification and galvanic disconnection of impressed transmitter signals, current signals and voltage signals with additional simulation function via set value specification, which can be activated.

Specific characteristics

- Restoration of the last device condition on supply connection (i.e. after power cut).
- Setting of a set value is carried out undamped and independent of the trimmer positions between $0 . .100 \%$ of the specified output range.
- Check back contact in set value condition (closer).
- The output signal remains even with missing input signal at the output start (i.e. 4 mA).
- Configurable via AD-STUDIO.

Business data

Order number
AD-TV 320 GS

Technical specifications

Transmitter supply

Feeding voltage
Current limit
Input current
Measuring range Input resistance
Input voltage
Measuring range
Input resistance

Output current

Output range
Max. burden
Max. residual ripple
Output voltage
Output range
Min. burden
Max. residual ripple

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Input power AC/DC
Transmission behaviour
Basic accuracy
Temperature influence
Response time
Damping (optional)
Trimmer function
Linearization (optional)
Setpoint encoder
Remote control
Input
Voltage
Pulse controlled
Static
Front button

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Weight
Manner of fastening
Environmental conditions
Ambient temperature
Storage and transport
$26 \ldots 19 \mathrm{~V}(4 \ldots 20 \mathrm{~mA})$
$\sim 25 \mathrm{~mA}$

0 ... 20 mA "
50 Ohm

0 ... 10 V "
100 kOhm (10 kOhm / Volt)

0 ... 20 mA "
500 Ohm
40μ Ass

0 ... 10 V "
1 kOhm
20 mVss

50 ... $253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
230 V AC
20 ... 253 V DC
24 V DC
3,5 VA / 2,0 W
< 0,2 \%
$100 \mathrm{ppm} / \mathrm{K}$
50 ms
$0,1 \% / \mathrm{s}$ (linear max. ~950 s)
+/-25\%
$24 \times / y$, interpoliert
0 ... $270^{\circ}=0$... 100%

Optokoppler
10 ... 30 V DC
$200 \ldots 1000 \mathrm{~ms}$
$>1000 \mathrm{~ms}$
~ 200 ms
$23 \times 78 \times 103 \mathrm{~mm}$
IP 20
screw clamp
$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
$0,5 \mathrm{Nm}$
$\sim 100 \mathrm{~g}$
35 mm DIN rail 35 mm
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots .0^{\circ} \mathrm{C}$ (no condensation)

Supply Isolation Amplifier

Isolation Ampilifer With Reference Function

AD-TV 320 GS

Technical specifications
EMC
Product family standard Emitted interference
EN 61326-1 ${ }^{2}$
EN 55011, CISPR11 CI. B, Gr. 1
\section*{Electrical safety requirements}
Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input / output	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits electrical surge protection Input electrical surge protection Output Protection against overvoltage reverse polarity Power supply	

1) Values must be adviced by order
2) During checking, slight signal deviations are possible.

Block and wiring diagram

Eingangsbeschaltung / input wiring

Simulationsbeschaltung / simulation wiring

Dimensions

Simulation control

Special Functions

Burden Amplifier

Description

The burden amplifier AD-BV 20 GVC serves the power amplification (burden increase) in application with high current loop resistance, i.e. line resistance. The burden amplifier is switched directly behind a present current source (i.e. separation amplifier AD-TV 22 GL), whereby the energy of the current source is also used. The device output of the total device chain is optimally utilised. The galvanic signal separation of the series separation amplifier continues to be realised.

Application

In applications where isolation amplifiers with e.g. max. 500 Ohm can no longer provide the required load voltage to bridge high line resistances.

Business data

Order number
AD-BV 20 GVC

Technical specifications

Input current	
Input range	$0 \ldots 20 \mathrm{~mA}$
Required input voltage	6 V
Input voltage requirement with	2 V
bridge cl. 4 and 5	

Output current

Max. output range $\quad 0 \ldots 20 \mathrm{~mA} ; 1: 1$

Max. burden 1000 Ohm
Maximum load with bridge cl. 41300 Ohm and 5
No galvanic isolation to the input!

Transmission behaviour

Basic accuracy	$0,2 \%$ of full scale
Temperature influence	$<10 \mathrm{ppm} / \mathrm{K}$ of full scale

Supply

Voltage range AC $50 \ldots 253 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Nominal voltage AC 230 V AC
Voltage range DC 20 ... 253 V DC
Nominal voltage DC 24 V DC
Power consumption AC / DC 1,5 VA / 1W
Housing

Manner of fastening	DIN rail 35mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. $2,5 \mathrm{~mm}^{2}$
Weight	$\sim 140 \mathrm{~g}$
Environmental conditions	
Ambient temperature	$-10 \ldots 50{ }^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard ${ }^{2)} \quad$ EN 61326-1
Emitted interference EN 55011, CISPR11 CI. B, Gr. 1
${ }^{2}$) During electromagnetic disturbance minor changes in output signal are possible.
Electrical safety requirements
Product family standard EN 61010-1

Overvoltage category II
Pollution degree 2
Galvanic isolation, test voltages
Signal/auxiliary voltage $\quad 3 \mathrm{kV}(1 \mathrm{~min})$

Protective systems

Input/output
Power supply
over voltage and over current over voltage, over current and over temperature

Burden Amplifier

AD-BV 20 GVC

Block and wiring diagram

Dimensions

Special Functions

Sum Data Amplifier

Description

The sum data amplifier adds up or subtracts up to 4 singly rateable input signals and converts these to a sum proportional or difference proportional output signal. As input signals, currents up to 20 mA or voltages up to 10 V (also bipolar) are possible. The inputs are galvanic separated from the auxiliary voltage and the outputs. The two analogue outputs current (max. 20mA) and voltage (max. 10V) can be utilised simultaneously. The device can be configured with the optional configuration software AD-Studio via the interface AD-PC. However, this can also be carried out at the works according to customer data.

Application

Analogue summing/subtraction of single measurable variables such as through flows, outputs or quantities.

Business data

Order number

AD-SMV 400 GVC-I
4 Current inputs
AD-SMV 400 GVC-U

Technical specifications

Current inputs

Measuring range ${ }^{\text {1) }}$	$-20 \ldots+20 \mathrm{~mA}$
Number	4
Input resistance	60 Ohm

Voltage inputs

Measuring range ${ }^{1)}$
$-10 \ldots+10 \mathrm{~V}$
Number
4
Input resistance
1 MOhm
${ }^{1)}$ Please specify current or voltage inputs when ordering. A galvanic coupling is to be excluded.

Output current

Max. output range	$0 \ldots .20,4 \mathrm{~mA}$
Max. burden	500 Ohm
Residual ripple	$20 \mu \mathrm{Ass}$
Output voltage Max. output range	$0 \ldots 10,2 \mathrm{~V}$
Min. burden Residual ripple	5 kOhm
Resolution Input Output	10 mVss
	13 bit

Transmission behaviour

Basic accuracy
Temperature influence Rise time
Supply
Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC
Housing
Manner of fastening DIN rail 35mm (EN 50022)
Type of protection
Connector cross section
Weight
Environmental conditions
Ambient temperature
Storage and transport

0,2 \% of full scale
< $100 \mathrm{ppm} / \mathrm{K}$ of full scale
100 ms (output auf 90%)

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
230 V AC
20 ... 253 V DC
24 V DC
2,2 VA / 1W

IP 20
max. 2,5 mm 2
$\sim 140 \mathrm{~g}$
$-10 \ldots 60^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Special Functions

Sum Data Amplifier

Technical specifications

EMC
Product family standard ${ }^{2)}$ EN 61326-1
Emitted interference EN 55011, CISPR11 CI. B, Gr. 1
${ }^{2}$) During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input/output
2,5 kV (1 min)

Signal/auxiliary voltage
3 kV (1 min)

Protective systems

Input/output over voltage and over current
Power supply over voltage, over current and over temperature

Block and wiring diagram

Dimensions

Special Functions

Maximum/Minimum Value Evaluator

Description

The evaluator is programmed comfortably via PC or laptop. The relevant parameterization software AD-Studio and the programming interface cable are available as option. The maximum/minimum value evaluator AD-MMA 400 GVC acquires up to four input streams $0 / 4-20 \mathrm{~mA}$, compares them and makes the highest or deepest of these streams available 1:1 at the output. The highly linear and galvanically separated output signal (max. 20mA or 10V) is amplified thereby and can used at the same time. The integrated power supply unit is galvanically separated from the input signal as well as also from the output signal. Customer specific works settings are possible on request.

Application

Acquisition of up to four input signals, comparison and output of the maximum or minimum value.

Business data

Order number

AD-MMA 400 GVC-I
AD-MMA 400 GVC-U

4 Stromeingänge
4 Spannungseingänge

Technical specifications

Current inputs

$\quad-20 \ldots+20 \mathrm{~mA}$	
Measuring range	4
Number 1)	60 Ohm
Input resistance	$-10 \ldots+10 \mathrm{~V}$
Voltage inputs	4
Measuring range $^{\text {Number }}$ 1)	1 MOhm

${ }^{1)}$ Please specify current or voltage inputs when ordering. A galvanic coupling is to be excluded.

Output current

Max. output range	$0 \ldots 20,4 \mathrm{~mA}$
Max. burden	500 Ohm
Residual ripple	$20 \mu \mathrm{Ass}$
Output voltage Max. output range	$0 \ldots 10,2 \mathrm{~V}$
Min. burden Residual ripple	5 kOhm
Resolution Input Output	10 mVss
	13 bit

Transmission behaviour

Basic accuracy
Temperature influence
Rise time
Supply
Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC

Housing

Manner of fastening DIN rail 35mm (EN 50022)
Type of protection
Connector cross section
Weight
max. 2,5 mm 2
$\sim 140 \mathrm{~g}$
Environmental conditions
Ambient temperature
Storage and transport
$-10 \ldots 60^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Special Functions

Maximum/Minimum Value Evaluator

Technical specifications

EMC
Product family standard ${ }^{2)}$ EN 61326-1
Emitted interference
EN 55011, CISPR11 CI. B, Gr. 1
${ }^{\text {2) }}$ During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

Product family standard EN 61010-1
Overvoltage category II
Pollution degree 2

Galvanic isolation, test voltages

Input/output
$2,5 \mathrm{kV}$ (1 min)

Signal/auxiliary voltage
3 kV (1 min)

Protective systems

Input/output over voltage and over current
Power supply over voltage, over current and over temperature

Block and wiring diagram

Dimensions

Redundancy Evaluator

Description

For important analogue values it must be considered that a measuring value can also be incorrect if it is inside the admissible measuring range. Such an error can be determined through redundancy measuring, here three analogue values are measured and a mean value is obtained. If the difference between the channels exceed a user-defined limit, the deviating input is reported via a potential-free relay and is at the same time excluded from the averaging. Consequently a secure analogue signal continues to be present at the output. If more than one channel deviates, the output is set to the measuring range start and all relays report an error. The redundancy evaluator AD-RA 300 can also be operated with only 2 inputs. In this case, the percental difference of the two measuring signals is monitored. If the difference is too great, the two relays would in this case also report an error and the output signal is set to the measuring range start. All necessary parameters can be configured directly at the device or via a PC software.

Specific characteristics

- 3 current inputs (bipolar)
- the deviating input is reported via a respective potential-free relay
- current and voltage input are freely scalable and simultaneously operational
- multicoloured (RGB) illuminated LCD display
- simulation mode (auto/manual)

Business data

Order number
AD-RA 300 GVF

Technical specifications	
Current inputs	
Measuring range	$-20 \ldots+20 \mathrm{~mA}$
Number	3
Input resistance	60 Ohm
Output current	
Max. output range	0 ... 20,4 mA
Max. burden	500 Ohm
Residual ripple	20μ Ass
Output voltage	
Max. output range	0 ... 10,2 V
Min. burden	5 kOhm
Residual ripple	10 mVss
Resolution	
Input	13 bit
Output	10 bit
Relay outputs A...C	
Contact type	3 changeover contact
Max. AC-breaking capacity	$250 \mathrm{~V} \mathrm{AC}$,2 A AC, 50 Hz
Max. DC-breaking capacity	50 V DC, 2 A DC
Switching operations	
Mechanical	10^{7}
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=1$	$6 * 10^{5}$
AC: $230 \mathrm{~V} / 2 \mathrm{~A}, \cos (\mathrm{phi})=0,4$	$2 * 10^{5}$
DC: $24 \mathrm{~V} / 1 \mathrm{~A}$	$2{ }^{*} 10^{5}$
Display	
Graphic-LCD	42×64 Pixel, background RGB lights
Digital display	4-digit, can be configured
Display function	scaled input signal, input signal, output, limits, scaling unit
Transmission behaviour	
Basic accuracy	0,2\% of full scale
Temperature influence	+/-100 ppm/K of full scale
Rise time	100 ms (output auf 90%)
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	20 ... 253 V DC
Nominal voltage DC	24 V DC
Power consumption AC / DC	2,2 VA / 1W
Housing	
Manner of fastening	DIN rail 35mm (EN 50022)
Type of protection	IP 20
Connector cross section	max. 2,5 mm ${ }^{2}$
Weight	$\sim 200 \mathrm{~g}$

Measuring Converter

Redundancy Evaluator

AD-RA 300 GVF

Technical specifications

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 60^{\circ} \mathrm{C}$
Storage and transport
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)
EMC
Product family standard ${ }^{1)}$
Emitted interference
EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1
"During electromagnetic disturbance minor changes in output signal are possible.
Electrical safety requirements
Product family standard EN 61010-1
Overvoltage category II
Pollution degree

Block and wiring diagram

Galvanic isolation, test voltages

Input/output

Protective systems

Input/output over voltage and over current
Power supply
$2,5 \mathrm{kV}$ (1 min)
3 kV (1 min) over voltage, over current and over temperature

Dimensions

Special Functions

Analogue Calculator

Description

The analogue calculator AD-MU 400 GVC multiplies, divides or extracts square roots up to 4 singly rateable input signals or converts these in a product proportional, quotient proportional or radix proportional output signal. As input signals, currents up to 20 mA or voltages up to 10 V (also bipolar) are possible. The inputs are galvanic separated from the auxiliary voltage and the outputs. The two analogue outputs current ($\max .20 \mathrm{~mA}$) and voltage (max. 10 V) can be utilised simultaneously. The device can be configured with the optional configuration software ADStudio via the interface AD-PC. However, this can also be carried out at the works according to customer data.

Application

Continuous display of DC output $=$ current x voltage, Amount of heat $=$ temperature difference x through flow etc.

Business data

Order number

AD-MU 400 GVC-I
AD-MU 400 GVC-U

Technical specifications

Current inputs

Measuring range	-20 ... + 20 mA
Number ${ }^{1)}$	4
Input resistance	60 Ohm
Voltage inputs	
Measuring range	-10 ... + 10 V
Number ${ }^{1)}$	4
Input resistance	1 MOhm

${ }^{1)}$ Please specify current or voltage inputs when ordering. A galvanic coupling is to be excluded.

Output current

Max. output range	$0 \ldots 20,4 \mathrm{~mA}$
Max. burden	500 Ohm
Residual ripple	$20 \mu \mathrm{Ass}$
Output voltage Max. output range $0 \ldots 10,2 \mathrm{~V}$ Min. burden 5 kOhm Residual ripple 10 mVss Resolution 13 bit Input 10 bit.	

Transmission behaviour

Basic accuracy
Temperature influence
Rise time

Supply

Voltage range AC
Nominal voltage AC
Voltage range DC
Nominal voltage DC
Power consumption AC / DC

Housing

Manner of fastening DIN rail 35mm (EN 50022)
Type of protection
Connector cross section Weight
max. $2,5 \mathrm{~mm}^{2}$
$\sim 140 \mathrm{~g}$
Environmental conditions
Ambient temperature
Storage and transport
$-10 \ldots 60^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Special Functions

Analogue Calculator

Technical specifications

EMC
Product family standard ${ }^{2)} \quad$ EN 61326-1
Emitted interference
EN 55011, CISPR11 CI. B, Gr. 1
${ }^{2}$) During electromagnetic disturbance minor changes in output signal are possible.

Electrical safety requirements

$\begin{array}{ll}\text { Product family standard } & \text { E } \\ \text { Overvoltage category } & \text { II } \\ \text { Pollution degree } & 2\end{array}$

Galvanic isolation, test voltages

Input/output
Signal/auxiliary voltage
$2,5 \mathrm{kV}$ (1 min)
3 kV (1 min)

Protective systems

Input/output
Power supply
over voltage and over current
over voltage, over current and over temperature

Block and wiring diagram

Dimensions

Special Functions

Isolation Amplifier With Memory Function

Description

The analogue memory AD-AS 320 GS serves the galvanic separation, conversion and amplification of DC current signals and voltage signals ($0 / 4-20 \mathrm{~mA}$ or $0 / 2-10 \mathrm{~V}$). The device can save an analogue value over an unlimited period. With an active control signal (24 V active or contact), the output signal follows the input signal. If the control signal is deactivated, the instantaneous output signal remains saved. The saved value is also restored after a supply voltage failure. Alternatively, the analogue value can also be taken over to the output by pressing the memory key briefly. An activation of zero trimmer and full trimmer is possible by pressing the memory key for longer (only in signal sequence mode). With this, the signal dimensions can be adjusted at the front in the range of $\pm 25 \%$.

Application

Conversion, burden amplification and galvanic disconnection of impressed transmitter signals, current signals and voltage signals with additional memory function for maintenance work.

Specific characteristics

- The device has additionally a transmitter supply available.
- Restoration of the last device condition (power cut).
- Feedback contact with memory condition (closer).
- Configurable via AD-STUDIO.

Business data

Order number
AD-AS 320 GS

Technical specifications	
Transmitter supply	
Feeding voltage	$26 . .19 \mathrm{~V}$ ($4 . . .20 \mathrm{~mA}$)
Current limit	$\sim 25 \mathrm{~mA}$
Input current	
Measuring range	0... 20 mA "
Input resistance	50 Ohm
Input voltage	
Measuring range	0 ... $10 \mathrm{~V}{ }^{17}$
Input resistance	100 kOhm (10 kOhm / Volt)
Output current	
Output range	0 ... 20 mA)
Max. burden	500 Ohm
Max. residual ripple	40μ Ass
Output voltage	
Output range	$0 \ldots 10{ }^{17}$
Min. burden	1 kOhm
Max. residual ripple	20 mVss
Supply	
Voltage range AC	50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Voltage range DC	$20 . . .253$ V DC
Nominal voltage DC	24 V DC
Input power AC/DC	$3,5 \mathrm{VA} / 2,0 \mathrm{~W}$
Transmission behaviour	
Basic accuracy	<0,2 \%
Temperature influence	$100 \mathrm{ppm} / \mathrm{K}$
Response time	50 ms
Damping (optional)	0,3\%/s (linear max. ~300 s)
Trimmer function	+/- 25\%
Linearization (optional)	24 Punkte, interpoliert
Remote control	
Input	Optokoppler
Voltage	$10 . . .30 \mathrm{~V}$ DC
Pulse controlled	$200 . . .1000 \mathrm{~ms}$
Static	> 1000 ms
Front button	$\sim 200 \mathrm{~ms}$
Housing	
Dimensions (WxHxD)	$23 \times 78 \times 103 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,5 Nm
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

Special Functions

Isolation Amplifier With Memory Function

Technical specifications

EMC

Product family standard Emitted interference

EN 61326-1 ${ }^{\text {2 }}$
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements
Product family standard
Overvoltage category
Pollution degree 2
Galvanic isolation, test voltages

Input / output	$1,5 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Signal / supply unit	$3 \mathrm{kV}, 50 \mathrm{~Hz}(1 \mathrm{~min})$.
Protection circuits	
Input	electrical surge protection
Output	electrical surge protection
Power supply	Protection against overvoltage
	reverse polarity

1) Values must be adviced by order.
2) During checking, slight signal deviations are possible.

Block and wiring diagram

Dimensions

Special Functions

Electrode Relay

Description

The electrodes are supplied with alternating voltage. If a conduction liquid i.e. water, bridges the mass and the max-electrode, the output relay responds, the transmitter power monitor lights up. Furthermore an internal, commutator ensures that the min-electrode becomes effective. The relay de-energize, if the mass and the min-electrode are not conductive connected. The sensitivity can be adjusted to the given circumstances via an integral trimmer.

Application

Monitoring and regulating levels of conductive liquids, especially water.

Specific characteristics

- 3 input electrodes
- AC current measurement
- universal wide range power supply

Business data

Order number AD-ER 01 GS

Technical specifications

Electrodes

Voltage	$<10 \mathrm{~V} \sim$
Current	$<1 \mathrm{~mA}$
Frequency	$\sim 45 \mathrm{~Hz}$
Sensitivity	$0 \ldots 60 \mathrm{kOhm}$
Response time	$\sim 10 \mathrm{~ms}$

Relay output

Maximum switching load AC
Maximum switching load DC
Contact construction
Switching operations mechanical
At $230 \mathrm{~V} / 2 \mathrm{AA}$ AC, $\cos ($ phi $)=1 \quad 600000$
At 230V/2A AC, $\cos ($ phi $)=0,4 \quad 200000$
At 24V/1 A DC 200000
Supply
Voltage range AC
Nominal voltage AC
Power consumption AC
Voltage range DC
Nominal voltage DC
Power consumption DC

Housing

Dimensions (W×H×D)	$23 \times 78 \times 103 \mathrm{~mm}^{3}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire $/ 4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	$0,5 \mathrm{Nm}$
Weight	$\sim 100 \mathrm{~g}$
Manner of fastening	35 mm DIN rail 35 mm

Environmental conditions

Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard
Emitted interference
250 V, 2 A
$50 \mathrm{~V}, 2 \mathrm{~A}$
potential-free changeover 10000000

50 ... 253 V AC, $50 / 60 \mathrm{~Hz}$
230 V AC
3 VA
20 ... 253 V DC
24 V DC
1,4 W
$23 \times 78 \times 103 \mathrm{~mm}^{3}$
IP 20
screw clamp
mm² flex wire / $4 \mathrm{~mm}^{2}$ one wire
$\sim 100 \mathrm{~g}$
35 mm DIN rail 35 mm
... $50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements
Product family standard EN 61010-1

II
Pollution degree 2
Galvanic isolation, test voltages
Input / output $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Signal / supply unit $\quad 3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits
Input
Output
Power supply
electrical surge protection electrical surge protection
Protection against overvoltage reverse polarity

[^0]
Special Functions

Electrode Relay

AD-ER 01 GS

Display and operating elements

Front
On
response
Output

Meaning

LED green, Power supply
Sensitivity: 0 ... 60 kOhm LED red, Output state

Front view

Block and wiring diagram

Dimensions

Description

The Photovoltaic-Optimizer AD-PVO 2000 monitors the supply of solar energy to the main connection of a building. If the supply output exceeds a limiting value set by the customer via a PC, an internal output relay is triggered. With this switching relay, electric consumers (i.e. electric heating rod in the process water tank of the heating, air-conditioning device or heat pump) can now be triggered. With the AD-PVO 2000, the energy is converted on site and not fed back into the public low-voltage network. Through the use of this device PV systems are optimized for their own consumption and relieves the public low-voltage grid. Additionally, the AD-PVO 2000 has an error message LED and an integral error message relay, via which error messages (i.e. permanent failure of the feeding) can be displayed or acoustically signalled outside the distributor cabinet. It is recommended to mount the AD-PVO 2000 directly after the counter of the energy supply in the distributor cabinet, as measuring should be carried out as close as possible to the feeding point. The device requires all three outer conductor voltages for its measurements and the zero conductor. The AD-PVO 2000 measures the current via three external split current current transformer, which can be mounted directly onto the 3 phases after the counter, therefore saving space (without separation). The Photovoltaic Optimiser acquires the selfgenerated supply energy from the measurement voltage L1. Due to its efficient switching network and its low power consumption, the AD-PVO 2000 generates only a negligible amount of warming and can therefore be lined up closely.

Application

For optimising the self-generated energy at photovoltaic units

Specific characteristics

- Self-sufficiency through measuring voltages
- Internal overload and fault relay
- Current measurement with clamp on/split core current transformer
- Configuration via PC
- compatible with the most SG-Ready compatible heat pumps

Business data

Order number
AD-PVO 2000 GT

Technical specifications

Current-inputs (11...I3)

Measuring range
Input resistance
Voltage-inputs (L1...L3)
Measuring range
Input resistance
External current-transformer

Primary current	$0 \ldots 100 \mathrm{~A} \mathrm{AC}$
Secondary current	$0 \ldots 33 \mathrm{~mA} \mathrm{AC}$
Transformation ratio	$1: 3000(\mathrm{~Np}: \mathrm{Ns})$
Maximum wire diameter	15 mm
Max. secundary wire length	2 m
Isolation-voltage	$2,5 \mathrm{kV} / 1 \mathrm{~min}$
Dimensions (WxHxD)	$32 \times 42 \times 46 \mathrm{~mm}$

Load-relay
Maximum switching load AC $250 \mathrm{~V}, 9 \mathrm{~A}$
Maximum switching load DC $50 \mathrm{~V}, 9 \mathrm{~A}$
Contact construction
Switching operations
mechanical
At $230 \mathrm{~V} / 9 \mathrm{~A} A C, \cos ($ phi $)=1400000$
At 230V/9A AC, $\cos ($ phi $)=0,4 \quad 150000$
At $24 \mathrm{~V} / 9 \mathrm{~A} D \mathrm{C}$

Error-relay

Maximum switching load AC
Maximum switching load DC
Contact construction
Switching operations
mechanical
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos ($ phi $)=1 \quad 600000$
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4 \quad 200000$
At $24 \mathrm{~V} / 2 \mathrm{~A} D \mathrm{C} 200000$
Supply
Voltage range AC
Nominal voltage AC
Power consumption ca. 10 Ohm

230 V AC (+/-10 \%)
ca. 500 kOhm

0 ... 100 A AC
0 ... 33 mA AC
(Np : Ns)

2 m
$2,5 \mathrm{kV} / 1 \mathrm{~min}$
$32 \times 42 \times 46 \mathrm{~mm}$
closing contact
6000000

200000

250 V, 2 A
$50 \mathrm{~V}, 2 \mathrm{~A}$
changeover contact
10000000 voltage-inputs)
230 V AC
max. 3,8 VA

0 ... 33 mA AC (0 ... 100 A AC via external current transformer)

230 V AC (+/- 10%), $50 / 60 \mathrm{~Hz}$ (see

Transfer behavior - in reference to the current value
Basic accuracy $<1 \%$ (class 1)

Temperature influence
Response time
Housing
Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Skinning length
Weight
Manner of fastening
Environmental conditions
Ambient temperature
Storage and transport
< 1 \% (class 1)
80 ppm/K
<2 s
$71 \times 90 \times 58 \mathrm{~mm}$
IP 20
screw clamp
2,5 mm^{2} flex wire / $4 \mathrm{~mm}^{2}$ one wire 0,6 Nm
6 mm
~ $175 \mathrm{~g}+3 \mathrm{x} 75 \mathrm{~g}$ (current-transf.)
35 mm DIN rail 35 mm
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Technical specifications

EMC
Product family standard
Emitted interference

EN 61326-1"
Emitted interference
EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements

Product family standard
Overvoltage category
Pollution degree
Safety measurement
Measurement category

EN 61010-1
II
2

Galvanic isolation, test voltages
Grid side to relay outputs $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to the pc-interface $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min .)
Grid side to control elements $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Relay-outputs among each $\quad 4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
other

Protection circuits

Input electrical surge protection
Load-relay
Power supply
spark quenching
protection against over-temperature, over-voltage and over-current
${ }^{1)}$ During checking, slight signal deviations are possible.

Block and wiring diagram

Heat pump control

SG-Ready

With the PV optimizer AD-PVO 2000 heat pumps can be signaled that enough PV surplus exists.
Thus, the heat pump can raise their storage or flow temperature and increase the personal consumption.
The optimizer is compatible with many SG-Ready (Smart Grid Ready) enabled heat pumps. The SG-Ready logo can be found on your heat pump.
The SG-ready interface is designed in in most cases as a contact input therefore, the overload relay of the PVO can be used easily as a signal for the temperature increase of the heat pump.
What is to be done at a SG-signal, it must be parameterized on the heat pump.

Dimensions

Operation

Operating LED

The green operating LED indicates the operating status of the device. - off: the device has no operating voltage

- permanently on: the device is in normal operation mode
- flashing with 1 Hz : the load is connected to the device
- flashing with 5 Hz : the manual load connection is active

Error LED

The red error LED indicates whether an error is present.

- off: no error
- on: error is present

Key: Manual load

The button "Manual load" serve the manual connection of the load relay. The load is activated with a long depression of the key (2s) and deactivated the same way.

Key: Quit

The key "Quit" is provided for quitting an error message. If an error is present, the red error indicator LED lights up and the error message relay responds. An acoustic indicator can be connected at the error message relay, for instance. Now if the key "Quit" is activated, the relay releases again. The red error LED, however, is lit until the error has been eliminated.

Software and parameterizing

The device can be parameterized and read out with the parameterizing software AD-Studio and the optionally available USB programming adapter AD-VarioPass3. The suitable USB driver for the USB programming adapter AD-VarioPass2 is supplied with the software ADStudio. With the software, measuring values can also be read out or logged.For connecting to the PC, the blind plug must be removed from the parameterizing interface (AD-PC), i.e. with a small screwdriver. Push the screwdriver into the slot provided and work the blind plug out. The following parameters can be edited:

- Filter: Analogue value filter for the input measuring dimensions. Serves the suppression of quick measuring value alterations.
- Current transformer type: Specifies the connected current transformers type (distinguishing primary current).
- Power of the load: The power consumption at the load relay required by the connected load must be specified here. This specification is required for internal calculations.
- Switch-on-level: Sets the switch-on threshold of the load relay, in reference to the fed power.
- Switch-off-level: Sets the switch-off threshold of the load relay, in reference to the fed power.
- Fault injection time: Sets the time, after which an alarm is triggered when during this set time no feeding has occurred.
- Plant size: Sets the plant size in kWp. Only used at 70\%-message.
- Error relay function: Sets the function of the fault relay. You can choose between two modes: "feed-error" and "70\%-message". The standard function "feed error" triggers a fault message after a specified time. This time is set in parameter "Fault injection time". The " 70% message" triggers an alarm if all loads of the PVO are switched on and the PV-plant over 70\% feeds. It is the "plant size" parameter evaluated.

Automatic load calibration

For commissioning the AD-PVO 2000, the parameters are normally adjusted via the parameterizing software AD-Studio and the available USB programming adapter AD-VarioPass3. However, an "automatic load calibration" can also be started directly at the device. In this operating mode, the output of the consumer connected to the load relay is automatically calibrated and a PC is not necessary. The load calibration is started with a longer depression of the "Quit-key" (3s). As long as the calibration is running, the two LEDs flash alternately. This process can last up to several minutes. If the calibration is cancelled with a brief depression of the "Quit-key", the values in the parameter are reset to the last status. After successful completion of the "automatic load calibration", the device takes over the measuring data and returns to normal operation. If the load calibration is not completed after approx. 15 minutes, there are too strong load fluctuations in the network. With too strong load fluctuations, the device is difficult to calibrate. Here we recommend to separate these loads briefly from the network during the calibration time, or to parameterize the device via the PC.

Safety instructions - it is essential to read these

\square
Explanation of symbols
Two squares, one inside the other, indicate a DOUBLE or REINFORCED insulation of the device against dangerous high voltages (i.e. mains voltage). This is valid for all parts at the housing, which can be touched, for the operating elements and the low voltages generated by and lead from the device.

Explanation of symbols
An exclamation mark inside a triangle indicates important notes in the technical data sheet and in the notes on safety. Read both documents to the end prior to commissioning. They contain important notes for the correct operation and the installation. Non-observation and errors resulting from this can lead to dangers.

Designated usage

The device must only be used for the purpose described in the relevant data sheet.
The device conforms to the valid CE European guidelines and harmonised standards.
Usage in explosion-endangered areas, outdoors or in damp rooms is NOT admissible.
The device must only be operated with the specified nominal voltage. The specified switching capacities must not be exceeded.
Opening or altering the device is not admissible. Do not repair the device yourself, but replace it with an equivalent new device. Repairs must only be carried out by the manufacturer.
The manufacturer accepts no liability due to infringement.
An operation under adverse environmental conditions is not admissible.
Adverse environmental conditions are:

- high sun radiation
wetness, dewing or too high humidity
- dust and flammable gases, vapours or solvents
- strong vibrations or electro-magnetic fields

Do not expose the device to stresses, which exceed the described limits.
Usage other than the one described in the relevant data sheet is not admissible and leads to damage of the product.
Furthermore, this is connected with dangers, as for instance short circuit, fire, electric shock etc., which can be fatal.
Notes on safety and dangers
Any warranty claim becomes void for damages due to non-observation of these notes on safety
and the relevant technical data sheet.
The following points must be noted:

- the valid laws, standards and regulations
- the stand of technology at the time of the installation
- the handbook and/or the technical data sheet
- the recognised rules of technology
- the fact that operating instructions can only state general regulations and that these regulations must be observed
- the device is not a toy and does not belong in the hands of children
- only operate the device with undamaged connection lines.

Notes on connection and installation
WARNING: dangerous electric voltage can lead to electric shock and burns.

- The installation and maintenance must be carried out by qualified electricians.
- Observe the technical data specified in the data sheet.
- Provide a correctly dimensioned overcurrent device in the vicinity of the device.
- Mount the device in an appropriate control box/control cabinet with a suitable type of protection according to IEC
60529 to protect it from mechanical or electrical damages.
- During maintenance work, cut the device off from all effective sources of energy and secure it against restart.
- If operating elements of protection class 1 are connected to the contact outputs of the device, the protective earthing
conductor connection must be carried out separately and properly.
ESD
ATTENTION: When handling the device, protective measures against electrostatic discharge
must be observed.
Maintenance and cleaning
The device is maintenance-free and does not have to be cleaned.
Disposal
Old electronic devices are valuable substances and do not belong into the household waste. If the device has reached the end of its useful life, dispose of the device according to the valid legal regulations.

Status: 09/2013

Adamczewski

Elektronische Messtechnik GmbH
74374 Zaberfeld
www.adamczewski.com

Description

The photovoltaics optimiser AD-PVO 3000 monitors the feed of solar energy at the main connection of a building. The analogue outlput ($0 . . .20$ $\mathrm{mA}, 4 \ldots .20 \mathrm{~mA}, 0 . . .10 \mathrm{~V}$ or $2 . .10 \mathrm{~V}$) can be parameterized freely, therefore, the electric heating rods can be controlled via a thyristor power controller. The AD-PVO 3000 regulates the heating rod output in such a way, that the feed is kept at zero. This is realised with an integral software PI regulator, which adjusts the power at the heating rod up to its maximum value of the feed-in power. With this device, the energy is optimally implemented on site and is not fed back into the public lowvoltage network. This way, the PC units are optimised for personal consumption and the public network is relieved. Additionally, the ADPVO 3000 has an error message LED and an integral error message relay, via which error messages (i.e. permanent failure of the in-feed) can be indicated or acoustically signalled outside the distribution cabinet. It is recommended to mount the AD-PVO 3000 directly after the energycounter of the energy supply in the distribution cabinet, as measuring is to be carried as close as possible to the in-feed point. The device requires for its measuring all three external phase voltages and the neutral conductor. The AD-PVO 3000 measures the current via three external split core current transformer, which can be mounted spacesaving (without separation) directly on the 3 phases after the counter. The photovoltaic optimizer receives the personal consumption energy from the measuring voltage L1.

Application

Stepless control of heating rods with the aid of a thyristor power controller.

Specific characteristics

- Supply via measuring voltages
- Analogue outlput for thyristor power controller
- Load regulation according to PI behaviour
- Current measuring via split core current transformer
- Parameterizing via PC (AD-Studio)

Business data

Order number
AD-PVO 3000 GT

Technical specifications

Current-inputs (11...I3)
Measuring range
Input resistance
Voltage-inputs (L1...L3)
Measuring range
Input resistance
External current-transformer

Primary current	$0 \ldots 100 \mathrm{~A} \mathrm{AC}$
Secondary current	$0 \ldots 33 \mathrm{~mA} \mathrm{AC}$
Transformation ratio	$1: 3000(\mathrm{~Np}: \mathrm{Ns})$
Maximum wire diameter	15 mm
Max. secundary wire length	2 m
Isolation-voltage	$2,5 \mathrm{kV} / 1 \mathrm{~min}$
Dimensions (WxHxD)	$32 \times 42 \times 46 \mathrm{~mm}$

Analogue output - current

Output range
Max. load
Resolution
Residual ripple

Analogue output - voltage

Output range
Min. load
Resolution
Residual ripple
0 ... $20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$
400 Ohm
10 Bit
ca. 30μ Ass

Error-relay

Maximum switching load AC $250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC $50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction
Switching operations
changeover contact mechanical
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1 \quad 600000$
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=0,4 \quad 200000$
At 24V/2A DC 200000

Supply

Voltage range AC
Nominal voltage AC
Power consumption
$0 \ldots 33 \mathrm{~mA}$ AC ($0 . . .100$ A AC via external current transformer) ca. 10 Ohm

230 V AC (+/-10 \%)
ca. 500 kOhm

0 ... 100 A AC
-... 33 mA AC
Np: Ns)

2 m
$2,5 \mathrm{kV} / 1 \mathrm{~min}$
$32 \times 42 \times 46 \mathrm{~mm}$
-
0 ... $10 \mathrm{~V}, 2$... 10 V
1 kOhm
10 Bit
50 mVss

Transfer behavior - in reference to the current value

Basic accuracy	$<1 \%$ (class 1)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	$<2 \mathrm{~s}$

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals
Skinning length
Weight
Manner of fastening

Environmental conditions

Ambient temperature
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

Technical specifications	
EMC	
Product family standard	EN 61326-1"
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Grid side to error relay	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to the pc-interface	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to analoge output	$3 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Analogue output	electrical surge protection
Power supply	protection against over-temperature, over-voltage and over-current

${ }^{1)}$ During checking, slight signal deviations are possible.

Block and wiring diagram

EMC-appropriate assembly

When assembling the AD-PVO 3000, including a thyristor power controller, please observe the regional and/or country specific regulations of the network operator.
When operating great loads with leading phase-angle or trailing phaseangle, considerable network reaction can be expected to the current intake, which is not sinusoidal.
The regulations for operation of heat generators with leading phaseangle or trailing phase-angle depend on the network operator. In case of doubt please contact the network operator.
The erector of the unit must, if necessary, reduce the electromagnetic emission with suitable chokes or suppressor filters.
Chokes reduce the current-dependent network reactions and effect an improvement of the power factor. The current harmonics content is reduced and the network quality is improved.
Network filter serve mainly the protection from high-frequency disturbance variables, which are emitted, conductor bound, via the network cable or through the air.
Shielding measures may be necessary to reduce the emission. The conductor between thyristor and load should be shielded. The shield must be earthed with low impedance or over a large surface, however, it must not replace the PE conductor!

Dimensions

Operation

Operation LED

The green operation LED indicates the operating status of the device. off: the device has no operating voltage - permanently on: the device is in normal operation - flashes with 5 Hz : the manual load connection is active.

Error LED

The red error LED indicates, whether an error is present. - off: no error - on: error present

Key: manual load

The key "Manual load" serves the manual 100% activation of the load. The load is activated and deactivated through a long pressure on the key (3s).
Key: Quit
The key "Quit" is provided for quitting of an error message. If an error is present, the red error message LED lights up and the error message relay engages. An acoustic indicator can be connected at the error message relay. When the key "Quit" is activated, the relay releases again. The red error LED, however, is lit until the error is eliminated. With long key depression see "Automatic load calibration".

Software and parameterizing

The device can be parameterized and read out via the parameterizing software AD-Studio and at the available USB programming adapter ADVarioPass3. The appropriate USB driver for the USB programming adapter AD-VarioPass3 is supplied with the software AD-Studio. With this software, measuring values can also be read out or logged. For connection to the PC, the blind plug must be removed from the parameterizing interface (AD-PC) i.e. with a small screwdriver. Please insert the screwdriver into the slot provided for this and lever the blind plug out.

The following parameter can be edited:

- Filter: Analogue value filter for the input measured quantity. Serves the suppression of rapid measuring value alterations.
- Current transformer type: Specifies the connected current transformers type (distinguishing primary current).
- Power of the load: Here must be stated, which power intake the connected load has at the load relay. This specification is required for internal calculations.
- Type of output signal: Sets the type of signal at the analogue output ($0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}, 0 \ldots 10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}$).
- Error time in-feed: Sets the time after which the alarm is released, if no in-feed has occurred during this time.
- Unit size: Here the size of the PV unit can be entered in kWp. Is only required with 70% message. - Function Error message relay: sets the function of the error message relay. You can choose between two types of functions: "In-feed error" and "70\% message". The standard function "In-feed error" activates an error message after the time set in the parameter "error time in-feed". The function "70\% message" activates a message, if more than 70% of the installed unit size in KWp is fed in, even though the load is switched on at the PVO. The parameter "unit size" is evaluated.
- Proportional constant: Sets the proportional constant of the PI regulators. Attention, influences the regulating behaviour of the device.
- Integral constant: Sets the integral constant of the PI regulator. Attention, influences the regulating behaviour of the device.
- Scanning time: Sets the scanning time of the PI regulator. Attention, influences the regulating behaviour of the device.

Automatic Load calibration

For the commissioning of the AD-PVO 3000, the parameter are normally set appropriately via the parameterizing software AD-Studio and the available USB programming adapter AD-VarioPass3. However, an "Automatic load calibration" can also be started directly at the device. In this operating mode, the power of the consumer connected to the thyristor power controller is automatically calibrated and a PC is not required. This load calibration is started with a long key depression of the "Quit key" (3s). As long as the calibration is running, both LEDs flash alternately. This process can last for several minutes. If the calibration is cancelled with a short depression of the "Quit key", the values in the parameter are reset to the last status. After successful completion of the "Automatic load calibration", the device takes over the measuring data and returns to normal operation. If the load calibration is not completed after approx. 15 minutes, then there are too strong load deviations in the network. With too strong load deviations, the device has difficulties in calibrating itself. It is recommended to separate these loads briefly from the network during the calibration time, or to parameterize the device with a PC.

Tested thyristor power controller

In principle, any desired thyristor can be connected to the analog output of the AD PVO 3000. However, the thyristor has to correspond to the technical specifications of the analog output. Below are two thyristor listed that have been tested in the house Adamczewski in combination with the AD-3000 PVO.

- Single phase applications:

Type: SIL465000
Manufacturer: CELDUC
Power supply: 160 ... 450 VAC
Analog input: 0 ... 10 V
Load: max. 22A (AC-51) - phase angle
Mounting: DIN rail (heat sink integrated)

- Three-phase applications:

Typ: RGC3 P 60130 E A P
Manufacturer: CARLO GAVAZZI
Power supply: 90 ... 250 VAC
Analog input: 0/4 ... 20 mA
Load: max. 37A (AC-51) - phase angle
Mounting: DIN rail (heat sink integrated)

Noise free stepless heating element

The heater AC Elwa has a $0 \ldots 10$ V-interface via which it can be controlled. Thus, it is compatible with the AD-PVO 3000. It requires no additional thyristor. The technology for a stepless control is built into the heating element. The heater does not produce disturbances in the power network. It can therefore be used without the consent of the energy supplier with the AD-PVO 3000.
Typ: AC-Elwa
Manufacturer: my-PV GmbH
Power supply: 230 VAC
Analog input: 0 ... 10 V
Heating power: max. 3 kW
Mounting: 1,5"-screwing

Safety instructions - it is essential to read these

\square
Explanation of symbols
Two squares, one inside the other, indicate a DOUBLE or REINFORCED insulation of the device against dangerous high voltages (i.e. mains voltage). This is valid for all parts at the housing, which can be touched, for the operating elements and the low voltages generated by and lead from the device.

Explanation of symbols
An exclamation mark inside a triangle indicates important notes in the technical data sheet and in the notes on safety. Read both documents to the end prior to commissioning. They contain important notes for the correct operation and the installation. Non-observation and errors resulting from this can lead to dangers.

Designated usage

The device must only be used for the purpose described in the relevant data sheet.
The device conforms to the valid CE European guidelines and harmonised standards.
Usage in explosion-endangered areas, outdoors or in damp rooms is NOT admissible.
The device must only be operated with the specified nominal voltage. The specified switching capacities must not be exceeded.
Opening or altering the device is not admissible. Do not repair the device yourself, but replace it with an equivalent new device. Repairs must only be carried out by the manufacturer.
The manufacturer accepts no liability due to infringement.
An operation under adverse environmental conditions is not admissible.
Adverse environmental conditions are:

- high sun radiation
wetness, dewing or too high humidity
- dust and flammable gases, vapours or solvents
- strong vibrations or electro-magnetic fields

Do not expose the device to stresses, which exceed the described limits.
Usage other than the one described in the relevant data sheet is not admissible and leads to damage of the product.
Furthermore, this is connected with dangers, as for instance short circuit, fire, electric shock etc., which can be fatal.
Notes on safety and dangers
Any warranty claim becomes void for damages due to non-observation of these notes on safety
and the relevant technical data sheet.
The following points must be noted:

- the valid laws, standards and regulations
- the stand of technology at the time of the installation
- the handbook and/or the technical data sheet
- the recognised rules of technology
- the fact that operating instructions can only state general regulations and that these regulations must be observed
- the device is not a toy and does not belong in the hands of children
- only operate the device with undamaged connection lines.

Notes on connection and installation
WARNING: dangerous electric voltage can lead to electric shock and burns.

- The installation and maintenance must be carried out by qualified electricians.
- Observe the technical data specified in the data sheet.
- Provide a correctly dimensioned overcurrent device in the vicinity of the device.
- Mount the device in an appropriate control box/control cabinet with a suitable type of protection according to IEC
60529 to protect it from mechanical or electrical damages.
- During maintenance work, cut the device off from all effective sources of energy and secure it against restart.
- If operating elements of protection class 1 are connected to the contact outputs of the device, the protective earthing
conductor connection must be carried out separately and properly.
ESD
ATTENTION: When handling the device, protective measures against electrostatic discharge
must be observed
Maintenance and cleaning
The device is maintenance-free and does not have to be cleaned.
Disposal
Old electronic devices are valuable substances and do not belong into the household waste. If the device has reached the end of its useful life, dispose of the device according to the valid legal regulations.

Status: 09/2013

Adamczewski

Elektronische Messtechnik GmbH
74374 Zaberfeld
www.adamczewski.com

Circuit examples

one phase without mains filter

Description

The Photovoltaic-Optimizer AD-PVO 4000 monitors the supply of solar energy at the main connection of a building. The device has an Ethernet interface, with the aid of which the stepless controllable heater rod of myPV "AC ELWA-E" or the PV-Power-Manager "AC THOR"can be started. The device communicates with the devices rod via the Modbus-TCP protocol. There is also a WEB-interface available, with the aid of which the AD-PVO 4000 can be parameterized or measuring values can be read off. The device can also be integrated into the home network with an Ethernet cable, and, depending on surplus power, starts the stepless heater rod or the PV-Power-Manager "AC THOR" with exactly this and regulates the zero feed at the connection to the building. The device also has an RS485 interface, to which the compatible display AD-MM-400 can be connected, or all measuring values are also available with the Modbus-RTU protocol. With this it is possible to display the measuring values directly on site as well as at a greater distance. The device converts the energy on site optimally to immediately available warmth and is not fed back into the public low-voltage network. Through this, the PV units are optimised for own consumption and the public low-voltage network is relieved. It is recommended to mount the AD-PVO 4000 directly after the counter of the energy supply in the distributor cabinet, as measurements should be taken as close as possible to the feed point. The device requires all three outer conductor voltages and the neutral conductor for its measuring. The AD-PVO 4000 measures the current via three external fold-over current transformer, which can be mounted, space saving (without separation), directly onto the 3 phases after the counter. The Photovoltaic-Optimizer obtains the own supply energy from the measuring voltage L1.

Application

Stepless control of the heating element of my-PV "AC ELWA-E" or the PV-Power-Manager "AC THOR" via Ethernet and the Modbus-TCP protocol.

Specific characteristics

- Power supply by measuring voltages
- Ethernet interface for heating rod control
- Load regulation according to PI behavior
- Current measurement through external split current transformer
- Parameterization via WEB interface

Business data

Order number
AD-PVO 4000

Accessory

AD-MM 400
AD-VarioPass3
Alternative current transformers

Photovoltaik-Optimierer mit EthernetAnbindung

TFT display in $96 \times 96 \mathrm{~mm}$ mounting format
RS485 to USB interface converter also larger current transformers on request possible

Technical specifications

Current-inputs (11...13)
Measuring range
Input resistance
Voltage-inputs (L1...L3)
Measuring range
Input resistance

External current-transformer

Primary current	$0 \ldots 100 \mathrm{~A} \mathrm{AC}$
Secondary current	$0 \ldots 33 \mathrm{~mA} \mathrm{AC}$
Transformation ratio	$1: 3000(\mathrm{~Np}: \mathrm{Ns})$
Maximum wire diameter	15 mm
Max. secundary wire length	2 m
Isolation-voltage	$2,5 \mathrm{kV} / 1 \mathrm{~min}$
Dimensions (WxHxD)	$32 \times 42 \times 46 \mathrm{~mm}$

Ethernet-interface

Speed
Protocols
HTTP-port
DHCP
Addressing
Standard-IP
Default subnet mask

RS485-interface

Protocol	Modbus-RTU
Baud rate	$\begin{aligned} & 2400,4800,9600,14400,19200, \\ & 28800,38400,57600,76800 \end{aligned}$
Data rate	8N1, 8E1, 8 O 1
Max. bus users	32
Bus termination	120 ohms both sides at the end
Max. length of bus	500 m (keine Stichleitungen)
Cable	twisted and shielded
Address	1 ... 255 (adjustable via WEB interface)
Compatible heating element	
Type	my-PV "AC ELWA-E"
Protocol	Modbus-TCP
Power	$0 . . .3$ kW
Supply	
Voltage range AC	230 V AC (+/- 10%), $50 / 60 \mathrm{~Hz}$
Nominal voltage AC	230 V AC
Power consumption	max. 3,8 VA

Transfer behavior - in reference to the current value

Basic accuracy	$<1 \%$ (class
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	$\mathrm{ca} 1 s$.

0 ... $33 \mathrm{~mA} A C$ (0 ... $100 \mathrm{~A} A C$ via external current transformer) ca. 10 Ohm

230 V AC (+/-10 \%)
ca. 500 kOhm

0 ... 100 A AC
0... 33 mA AC
p:Ns)
$2,5 \mathrm{kV} / 1 \mathrm{~min}$
$32 \times 42 \times 46 \mathrm{~mm}$
10/100 Mbit
Modbus-TCP; HTTP
80
activated
IP4
192.168.178.99
255.255.255.0

Temperature influence
Response time

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Terminals, wire cross section
Bolting torque terminals $\quad 0,6 \mathrm{Nm}$
Skinning length 6 mm
Weight $\quad \sim 175 \mathrm{~g}+3 \times 75 \mathrm{~g}$ (current-transf.)
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 7{ }^{\circ} \mathrm{C}$ (no condensation)

EMC

Product family standard
Emitted interference
EN 61326-1 ${ }^{11}$
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

Galvanic isolation, test voltages

Grid side to Ethernet interface $4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min .)
Protection circuits
Input electrical surge protection

Power supply protection against over-temperature, over-voltage and over-current
${ }^{1)}$ During checking, slight signal deviations are possible.

Block and wiring diagram

Dimensions

Circuit examples

Description

The photovoltaic optimizer AD-PVO 6000 monitors the feed of PV energy at the main connection to the building. If the feed conductor exceeds a limiting value, optimized via a PC by the customer, up to three independent load relays can be selected. These three load relays can be parameterized individually and can therefore switch loads either in phases or in steps. With these switching relays, electric consumers (i.e. electric heating rod in the water tank of the heating, air conditioning unit or heat pump), can be selected. With the AD-PVO 6000, the energy is implemented on site, it is not fed back into the public low-voltage network. Through the application of this device, PV units are optimised for personal consumption and the public network is relieved. Additionally, the AD-PCO 6000 has an error-message LED and an integral error message relay, via which error messages (i.e. permanent failure of the feed) can be indicated outside the distributer cabinet or can be signalled acoustically. It is recommended to mount the AD-PVO 6000 directly after the counter of the energy supplier in the distributor cabinet, as measuring should be carried out as close as possible to the feed point. The device requires all three outer conductor voltages and the neutral conductor for its measuring. The AD-PVO 6000 measures the current via three external split core current transformer, which can be mounted space-saving (without separation) directly on the 3 phases after the counter. The photovoltaic optimizer receives the personal consumption energy from the measuring voltage L1. This way, no separate supply voltage must be connected.

Application

Fr optimising the self-generated energy at photovoltaic units

Specific characteristics

- 3 internal overload and 1 fault relay
- Current measurement with clamp on/split core current transformer
- Configuration via PC
- compatible with SG-Ready compatible heat pumps

Business data

Order number
AD-PVO 6000 GT

Technical specifications	
Current-inputs (11...13)	
Measuring range	$0 \ldots 33 \mathrm{~mA} \mathrm{AC}$ (0 ... $100 \mathrm{~A} A C$ via external current transformer)
Input resistance	ca. 10 Ohm
Voltage-inputs (L1...L3)	
Measuring range	230 V AC (+/-10 \%)
Input resistance	ca. 500 kOhms
External current-transformer	
Primary current	0 ... 100 A AC
Secondary current	0 ... 33 mA AC
Transformation ratio	1:3000 (Np : Ns)
Maximum wire diameter	15 mm
Max. secundary wire length	2 m
Isolation-voltage	$2,5 \mathrm{kV} / 1 \mathrm{~min}$
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$32 \times 42 \times 46 \mathrm{~mm}$
Load relays (K1 to K3)	
Maximum switching load AC	$250 \mathrm{~V}, 9 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 9 \mathrm{~A}$
Contact construction	closing contact
Switching operations mechanical	6000000
At $230 \mathrm{~V} / 9 \mathrm{AAC}, \cos (\mathrm{phi})=1$	400000
At $230 \mathrm{~V} / 9 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	150000
At $24 \mathrm{~V} / 9 \mathrm{~A}$ DC	200000
Error-relay	
Maximum switching load AC	$250 \mathrm{~V}, 2 \mathrm{~A}$
Maximum switching load DC	$50 \mathrm{~V}, 2 \mathrm{~A}$
Contact construction	changeover contact
Switching operations mechanical	10000000
At $230 \mathrm{~V} / 2 \mathrm{~A} \mathrm{AC}, \cos (\mathrm{phi})=1$	600000
At $230 \mathrm{~V} / 2 \mathrm{AAC}, \cos (\mathrm{phi})=0,4$	200000
At $24 \mathrm{~V} / 2 \mathrm{~A}$ DC	200000
Supply	
Voltage range AC	$230 \mathrm{VAC}(+/-10 \%), 50 / 60 \mathrm{~Hz}$ (see voltage-inputs)
Nominal voltage AC	230 V AC
Power consumption	max. 5 VA
Transfer behavior - in reference to the current value	
Basic accuracy	< 1% (class 1)
Temperature influence	$80 \mathrm{ppm} / \mathrm{K}$
Response time	$<2 \mathrm{~s}$
Housing	
Dimensions (WxHxD)	$105 \times 90 \times 58 \mathrm{~mm}$
Type of protection	IP 20
Connection method	screw clamp
Terminals, wire cross section	$2,5 \mathrm{~mm}^{2}$ flex wire / $4 \mathrm{~mm}^{2}$ one wire
Bolting torque terminals	0,6 Nm
Skinning length	6 mm
Weight	$\sim 225 \mathrm{~g}+3 \times 75 \mathrm{~g}$ (current-transf.)
Manner of fastening	35 mm DIN rail 35 mm
Environmental conditions	
Ambient temperature	$-10 \ldots 50^{\circ} \mathrm{C}$
Storage and transport	$-10 . . .70^{\circ} \mathrm{C}$ (no condensation)

Technical specifications

Current-inputs (11...13)

Measuring range
Input resistance
Voltage-inputs (L1...L3)
Measuring range

External current-transformer

Technical specifications	
EMC	
Product family standard	EN 61326-1 ${ }^{1 \prime}$
Emitted interference	EN 55011, CISPR11 CI. B, Gr. 1
Electrical safety requirements	
Product family standard	EN 61010-1
Overvoltage category	11
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III
Galvanic isolation, test voltages	
Grid side to relay outputs	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to the pc-interface	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Grid side to control elements	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Load-relay to error-relay	$4 \mathrm{kV}, 50 \mathrm{~Hz}$ (1 min.)
Protection circuits	
Input	electrical surge protection
Load-relay	spark quenching
Power supply	protection against over-temperature, over-voltage and over-current

Block and wiring diagram

Heat pump control

SG-Ready

With the PV optimizer AD PVO 6000 heat pumps can be signaled that enough $P V$ surplus exists.
Thus, the heat pump can raise their storage or flow temperature and increase the personal consumption.
The optimizer is compatible with many SG-Ready (Smart Grid Ready) enabled heat pumps. The SG-Ready logo can be found on your heat pump.
The SG-ready interface is designed in in most cases as a contact input therefore, the overload relay of the PVO can be used easily as a signal for the temperature increase of the heat pump.
What is to be done at a SG-signal, it must be parameterized on the heat pump.
Through the three internal load relays, the heat pump can switch multiple states. It can be driven so several power levels.

Dimensions

Operation

Operating LED

The green operating LED indicates the operating status of the device. - off: the device has no operating voltage

- permanently on: the device is in normal operation mode
- flashing with 5 Hz : the manual load connection is active

Relay Status LEDs

- on: the load is connected to the device
- off: no load is connected

Error LED

The red error LED indicates whether an error is present.

- off: no error
- on: error is present

Key: Manual load (K1 ... K3)
The buttons "Manual load" serve the manual connection of the load relays. The load is activated with a long depression of the key (2s) and deactivated again the same way.

Key: Quit

The key "Quit" is provided for quitting an error message. If an error is present, the red error indicator LED lights up and the error message relay responds. An acoustic indicator can be connected at the error message relay, for instance. Now if the key "Quit" is activated, the relay releases again. The red error LED, however, is lit until the error has been eliminated.

Software and parameterizing

The device can be parameterized and read out with the parameterizing software AD-Studio and the optionally available USB programming adapter AD-VarioPass3. The suitable USB driver for the USB programming adapter AD-VarioPass2 is supplied with the software ADStudio. With the software, measuring values can also be read out or logged.
For connecting to the PC, the blind plug must be removed from the parameterizing interface (AD-PC), i.e. with a small screwdriver. Push the screwdriver into the slot provided and work the blind plug out.
The following parameters can be edited:

- Filter: analogue value filter for the input measuring dimensions. Serves the suppression of quick measuring value alterations.
- Current transformer type: Specifies the connected current transformers type (distinguishing primary current).
- Power of the load (K1 ... K3): the power consumption at the load relays required by the connected load must be specified here. This specification is required for internal calculations.
- Switch-on-level (K1 ... K3): sets the switch-on threshold of the load relay, in reference to the fed power.
- Switch-off-level (K1 ... K3): Sets the switch-off threshold of the load relay, in reference to the fed power.
- Fault injection time: Sets the time, after which an alarm is triggered when during this set time no feeding has occurred.
- Plant size: Sets the plant size in kWp. Only used at 70\%-message.
- Error relay function: Sets the function of the fault relay. You can choose between two modes: "feed-error" and "70\%-message". The standard function "feed error" triggers a fault message after a specified time. This time is set in parameter "Fault injection time". The "70\% message" triggers an alarm if all loads of the PVO are switched on and the PV-plant over 70\% feeds. It is the "plant size" parameter evaluated.
- Operation Mode: Sets the operating mode of the device. In operating mode 0 , the three load relays (K1, K2 and K3) are assigned with three output stages (example 500W, 1000W and 1500W) and they react in steps to the fed total output in all three phases. For the smallest switching stage, K1 must be selected and for the largest K3 must be selected.
In operating mode 1, each phase output is viewed separately and in each case one relay reacts to the relevant fed phase output (K1 to power in L1, K2 to power in L2 and K3 to power in L3).
With operating mode 2 , three different loads are switched intelligently. That is, all possible combinations of the three loads are switched, to optimally implement the surplus energy. If, for instance, a heating rod has three heating coils with $500 \mathrm{~W}, 1000 \mathrm{~W}$ and 2000 W , this results in seven combinations in steps of 500W. Here also the smallest load must be connected to K1 and the largest load must be connected to K3. In this operating mode, only the load capacity can be parameterized, the possible switching combinations and switching thresholds are calculated automatically.

Automatic load calibration

For commissioning the AD-PVO 6000, the parameters are normally adjusted via the parameterizing software AD-Studio and the available USB programming adapter AD-VarioPass3. However, an "automatic load calibration" can also be started directly at the device. In this operating mode, the output of the consumer connected to the load relays is automatically calibrated and a PC is not necessary. The load calibration is started with a longer depression of the "Quit-key" (3s). As long as the calibration is running, the two LEDs flash alternately. This process can last up to several minutes. If the calibration is cancelled with a brief depression of the "Quit-key", the values in the parameter are reset to the last status. After successful completion of the "automatic load calibration", the device takes over the measuring data and returns to normal operation. If the load calibration is not completed after approx. 15 minutes, there are too strong load fluctuations in the network. With too strong load fluctuations, the device is difficult to calibrate. Here we recommend to separate these loads briefly from the network during the calibration time, or to parameterize the device via the PC.

Safety instructions - it is essential to read these

Explanation of symbols
Two squares, one inside the other, indicate a DOUBLE or REINFORCED insulation of the device against dangerous high voltages (i.e. mains voltage). This is valid for all parts at the housing, which can be touched, for the operating elements and the low voltages generated by and lead from the device.

Explanation of symbols
An exclamation mark inside a triangle indicates important notes in the technical data sheet and in the notes on safety. Read both documents to the end prior to commissioning. They contain important notes for the correct operation and the installation. Non-observation and errors resulting from this can lead to dangers.

Designated usage

The device must only be used for the purpose described in the relevant data sheet.
The device conforms to the valid CE European guidelines and harmonised standards.
Usage in explosion-endangered areas, outdoors or in damp rooms is NOT admissible.
The device must only be operated with the specified nominal voltage. The specified switching capacities must not be exceeded.
Opening or altering the device is not admissible. Do not repair the device yourself, but replace it with an equivalent new device. Repairs must only be carried out by the manufacturer.
The manufacturer accepts no liability due to infringement.
An operation under adverse environmental conditions is not admissible.
Adverse environmental conditions are:

- high sun radiation
- wetness, dewing or too high humidity
- dust and flammable gases, vapours or solvents
- strong vibrations or electro-magnetic fields

Do not expose the device to stresses, which exceed the described limits.
Usage other than the one described in the relevant data sheet is not admissible and leads to damage of the product.
Furthermore, this is connected with dangers, as for instance short circuit, fire, electric shock etc., which can be fatal.
Notes on safety and dangers
Any warranty claim becomes void for damages due to non-observation of these notes on safety and the relevant technical data sheet.
The following points must be noted:

- the valid laws, standards and regulations
- the stand of technology at the time of the installation
- the handbook and/or the technical data sheet
- the recognised rules of technology
- the fact that operating instructions can only state general regulations and that these regulations must be observed
- the device is not a toy and does not belong in the hands of children
- only operate the device with undamaged connection lines.

Notes on connection and installation
WARNING: dangerous electric voltage can lead to electric shock and burns.

- The installation and maintenance must be carried out by qualified electricians.
- Observe the technical data specified in the data sheet.
- Provide a correctly dimensioned overcurrent device in the vicinity of the device.
- Mount the device in an appropriate control box/control cabinet with a suitable type of protection according to IEC
60529 to protect it from mechanical or electrical damages.
- During maintenance work, cut the device off from all effective sources of energy and secure it against restart.
- If operating elements of protection class 1 are connected to the contact outputs of the device, the protective earthing
conductor connection must be carried out separately and properly.
ESD
ATTENTION: When handling the device, protective measures against electrostatic discharge must be observed.
Maintenance and cleaning
The device is maintenance-free and does not have to be cleaned.
Disposal
Old electronic devices are valuable substances and do not belong into the household waste. If the device has reached the end of its useful life, dispose of the device according to the valid legal regulations.

Status: 09/2013

Circuit examples

Adamczewski

Elektronische Messtechnik GmbH
74374 Zaberfeld
www.adamczewski.com

[^0]: ${ }^{1)}$ During electromagnetic disturbance minor changes in output signal are possible

