Leistungsmesstechnik

AD-LU 320 GVD

Beschreibung

Der digitale Leistungsmessumformer AD-LU 320 GVD misst alle Größen des Wechselstromnetzes (Strom, Spannung, Energie, Oberschwingungen, Phasenwinkel, Wirk-, Blind- und Scheinleistung) und setzt diese Messwerte auf zwei frei skalierbare Analogausgänge um. Das Gerät eignet sich somit optimal für die Einbindung in Energiemanagementsysteme. Für die Messung von hohen Spannungen oder Strömen können jederzeit externe Wandler vorgeschaltet werden. Alle Messbereiche und Ausgänge können frei parametriert werden. Dies kann über das optionale Bedienteil AD-VarioControl oder über die Programmiersoftware AD-Studio erfolgen. Die LEDs an der Front signalisieren den Betriebszustand. Die kompakte Bauweise und die hohe Leistungsfähigkeit bei gleichzeitig niedrigem Energieverbrauch erlaubt den Einsatz in fast jeder Anwendung.

Anwendung

Typischer Einsatz in Anlagen, Maschinen oder Energiemanagementsystemen zur Bilanzierung und Bestimmung der Energieverteilung.

Besondere Merkmale

- Messung einer Phase
- Messgrößen: Wirk-, Blind-, Scheinleistungen, Ströme und Spannungen, Frequenz, Leistungsfaktor, Oberschwingungen (Wirkleistung), Energiezählung
- Strom- und Spannungsausgang
- Zähler für Wirkleistung (Bezug und Einspeisung), Blindleistung (induktiv und kapazitiv) und Scheinleistung
- Optional erhältliches Bedienmodul VarioControl
- 23 mm schmales Gehäuse mit abziehbaren Anschlussklemmen

Kaufmännische Daten

Bestellnummer

AD-LU 320 GVD

Zubehör (optional)

Bedienmodul AD-VarioControl
USB Programmieradapter AD-VarioPass
Konfigurationssoftware AD-Studio

Technische Daten

Stromeingang

Messbereiche 0 ... 1 A AC; 0 ... 5 A AC

Max. messbare 4

Oberschwingung

Spannungseingang

Messbereich 10 ... 253 V AC Eingangswiderstand > 1 MOhm

Stromausgang

Ausgabebereich 0/4 ... 20 mA
Max. Bürde 400 Ohm
Auflösung 11 Bit
Restwelligkeit 25 µAss

Spannungsausgang

Ausgabebereich 0/2 ... 10 V
Min. Bürde 10 kOhm
Auflösung 11 Bit
Restwelligkeit 20 mVss

Versorgung

Spannungsbereich AC

Nennspannung AC / DC

Spannungsbereich DC

Leistungsaufnahme AC / DC

Leistungsaufnahme mit

Spannungsbereich AC

230 V AC / 24 V DC

20 ... 253 V DC

3,4 VA / 1,8 W

3,6 VA / 2,0 W

Bedienmodul AC / DC Übertragungsverhalten

Grundgenauigkeit < 0,5 % (Klasse 0.5)

Temperatureinfluss 80 ppm/K

Reaktionszeit < 0,5 s (0...90 %, 100...10 %)

Stand 31.05.2023 Technische Änderungen und Druckfehler vorbehalten.

Leistungsmesstechnik

AD-LU 320 GVD

Technische Daten

Gehäuse

Abmessungen (bxhxt) 23x110x134mm Mit Bedienmodul (bxhxt) 23x110x138 mm

Schutzart IP 20

Anschlusstechnik Abziehbare Schraubklemmen Klemmen, Querschnitt 2,5 mm² Litze / 4 mm² Draht

 $\begin{array}{lll} \mbox{Anzugsmoment Klemmen} & \mbox{0,5 Nm} \\ \mbox{Abisolierlänge Klemmen} & \mbox{6 mm} \\ \mbox{Gewicht} & \mbox{\sim 150 g} \end{array}$

Aufbau 35 mm Normschiene

Umgebungsbedingungen

Umgebungstemperatur -10 ... 50 °C

Lager und Transport -10 ... 70 °C (Betauung vermeiden)

EMV

Produktfamiliennorm EN 61326-1 1)

Störaussendung EN 55011, CISPR11 Kl. B, Gr. 1

¹⁾ Während einer Störeinwirkung sind geringe Signalabweichungen möglich.

Elektrische Sicherheit

Produktfamiliennorm EN 61010-1

Überspannungskategorie II Verschmutzungsgrad 2

Sicherheit Messstromkreis EN 61010-2-030

Messkategorie CAT III

Galvanische Trennung, Prüfspannungen

Eingang zu Analogausgänge / 4 kV, 50 Hz (1 min.)

Versorgung

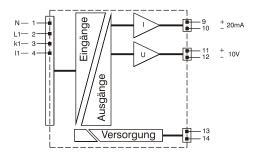
Versorgung zu 3 kV, 50 Hz (1 min.)

Analogausgänge

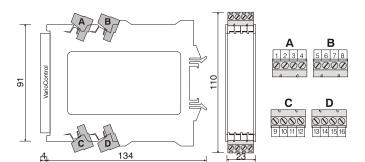
Schutzbeschaltungen

Eingänge Schutz gegen Überspannung
Netzteil Schutz gegen Übertemperatur,
Überspannung und Überstrom
Analogausgänge Schutz gegen Überspannung

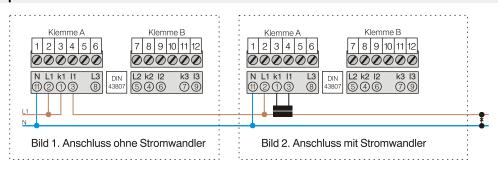
Anzeige- und Bedienelemente


On: LED für die Betriebsanzeige in grün

leuchtet - Normalbetrieb


blinkend - Signalausfall, Signal außerhalb Bereichsgrenzen **AD-PC**: Kommunikationsschnittstelle zur Konfiguration durch

einen PC


Anschlüsse, Blockschaltbild

Maßzeichnung

Schaltungsbeispiele

Leistungsmesstechnik

AD-LU 320 GVD

Modbus Kommunikation

Das Optionale Bedienmodul AD-VarioConnect verfügt über eine RS-485 Schnittstelle.

Die Daten werden über das Protokoll Modbus-RTÜ übertragen, das Bedienmodul AD-VarioConnect stellt dabei einen Modbus Slave dar. Die Kommunikation erfolgt nach dem Master-Slave-Verfahren und startet durch eine Anfrage des Masters z.B. einer SPS oder eines PC's. Jeder Busteilnehmer muss eine eindeutige Adresse besitzen. Erkennt ein Slave, dass seine Adresse vom Master angesprochen wurde, sendet der Slave immer eine Antwort. Die Slaves kommunizieren niemals untereinander. Sie sind auch nicht in der Lage, eine Kommunikation mit dem Master zu beginnen.

Der Modbus-Master kann über die Adressen die einzelnen Register des AD-LU 320 GVD auslesen.

Das voreingestellte Standard-Datenformat ist 19200,e,8,1 mit der Slaveadresse 1. Diese Einstellungen können über das Bedienmodul AD-VarioConnect geändert werden.

Startadresse	Registeranzahl	Name	Einheit	Datentyp	read	write
Messwerte:			•			
40202	1	Digitalausgang A		3	1	1
40203	1	Digitalausgang B 3			1	1
40204	1	Digitalausgang A LED		3	1	1
40205	1	Digitalausgang B LED		3	1	1
40501	2	Wirkleistung Gesamt kW 7 Wirkleistung Gesamt L1 kW 7		7	1	0
40503	2	Wirkleistung Gesamt L1		7	1	0
40509	2	Gesamtblindleistung	kvar	7	1	0
40511	2	Blindleistung L1 kvar		7	1	0
40517	2	Gesamtscheinleistung	kVA	7	1	0
40519	2	Scheinleistung L1	kVA	7	1	0
40525	2	Leistungsfaktor gesamt		7	1	0
40527	2	Leistungsfaktor in L1		7	1	0
40533	2	Wirkleistung Grundschwingung Gesamt	kW	7	1	0
40535	2	Wirkleistung Grundschwingung L1	kW	7	1	0
40541	2	Wirkleistung Oberschwingungen Gesamt	kW	7	1	0
40543	2	Wirkleistung Oberschwingungen L1	kW	7	1	0
40549	2	Spannung L1 / N	V	7	1	0
40555	2	Strom in N (berechnet)	A	7	1	0
40557	2	Strom in L1	A	7	1	0
40563	2	Peak Spannung L1	V	7	1	0
40569	2	Peak Strom L1	A	7	1	0
40575	2	Frequenz	Hz	7	1	0
40585	2	Phasenwinkel Psi L1	0	7	1	0
40801	2	Stromausgang	mA	7	1	0
40803	2	Spannungsausgang	V	7	1	0
	•		•	•	-	
Zähler:						
44003	2	Zähler kWh - Bezug	kWh	5	1	1
44005	2	Zähler kWh - Einspeisung	kWh	5	1	1
44007	2	Zähler kVarh - induktive	kVarh	5	1	1
44009	2	Zähler kVarh - kapazitive	kVarh	5	1	1
44011	2	Zähler kVAh - Scheinleistung	kVAh	5	1	1

Legende der Datentypen:

U08: 1	S08: 2	U16 : 3	S16 : 4	U32 : 5	S32 : 6	float: 7
---------------	---------------	----------------	----------------	----------------	----------------	----------