Description

The pulse summator AD-IS 102 GVC adds pulses arriving at two inputs and gives out sum-proportional pulses via its relay or transistor outputs. During this, the input pulses can be ready in any sequence and also at the same time. Each input can be assessed freely, this way differently assessed pulses can also be added. For evaluation of the inputs only whole number factors or divisors are possible. Mechanical contacts, NAMUR transmitter, active signals and semi-conductor switches can be connected and evaluated. The device can be parameterized by the customer via the optional PC configuration software AD-Studio, however, it can also be delivered preset. The inputs and outputs as well as the power pack are galvanic separated with high insulation. The transfer function of the device is: $\mathrm{O}=\left(11^{*}(\mathrm{~F} 1 / \mathrm{D} 1)\right)+\left(12^{*}(\mathrm{~F} 2 / \mathrm{D} 2)\right) \mathrm{O}=$ output, $\mathrm{I}=$ input, $\mathrm{F}=$ factor, $\mathrm{D}=$ divisor

Application

Adding of any quantity signals, such as through-flows or energy. Application example of energy balance: Input 1: $1000 \mathrm{Imp} / \mathrm{kWh}$, Input 2: $10 \mathrm{Imp} / \mathrm{kWh}$, Output: $100 \mathrm{Imp} / \mathrm{kWh}$

Specific characteristics

- 2 freely assessable impulse inputs
- relay output or transistor output
- integral wide-range power pack
- compatible with many types of transmitters
- max. input frequency 1 kHz
- only 18 mm construction width
- screw terminals can be pulled off
- can be parameterized via PC (AD-Studio)

Business data

Order number

AD-IS 102 GVC
AD-IS 102 GVCO
relay output
transistor output

Technical specifications

Input
NAMUR- transmitter $\quad 0 \ldots 1 \mathrm{kHz}$ (analysis of the NAMUR
Mechanical contact
Active voltage
Semiconductor switch

Relay output

Max. load AC
Max. load DC
Cycles AC- load
Cycles DC- load
Pulse duration

Transistor output (optional)

Max. load DC
Pulse duration

Supply

Voltage range
Power consumption

Housing

Dimensions (WxHxD)
Type of protection
Connection method
Bolting torque screw terminals
Weight
Manner of fastening

Environmental conditions

Ambient temperature
Storage and transport

EMC

Product family standard
Emitted interference values)
$0 \ldots 10 \mathrm{~Hz}$ (debounced input - Please note: low input bandwidth)
$0 \ldots 1 \mathrm{kHz}$ (12 V or 24 V)
$0 \ldots 1 \mathrm{kHz}$ (such as transistor / optocoupler)
$250 \mathrm{~V} / 2 \mathrm{~A}(\cos$ phi $=1)$
$50 \mathrm{~V} / 1 \mathrm{~A}$ (resistive load)
2 A (cos phi = 1): ca. 110000
1 A (resistive load): ca. 100000
0,5 ... 5 s
$30 \mathrm{~V} / 50 \mathrm{~mA}$
$0,05 \ldots 5 \mathrm{~s}$ (50% duty cycle at high frequency)

20 ... 253 V DC / 50 ... 253 V AC
max. 1,5 W / 2,6 VA
$18 \times 110 \times 134 \mathrm{~mm}$
IP 20
detachable terminal clamp ($2,5 \mathrm{~mm}^{2}$
flex wire / $4 \mathrm{~mm}^{2}$ one wire)
$0,5 \mathrm{Nm}$
135 g
DIN rail 35 mm (EN 50022)
$-10 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$ (no condensation)

EN 61326-1
EN 55011, CISPR11 CI. B, Gr. 1

Electrical safety requirements
Product family standard EN 61010-1
Galvanic isolation, test voltages

Input / output	$3,75 \mathrm{kV}(1 \mathrm{~min})$.
Signal / supply unit	$3,75 \mathrm{kV}(1 \mathrm{~min})$.

Protection circuits
Input
Power supply
Relay output
Transistor output
$3,75 \mathrm{kV}$ (1 min.)
electrical surge protection
electrical surge and reverse current protection
no protection
electrical surge protection

Pulse Summator

Block and wiring diagram

