Power Measurement

AD-LU 320 GVD

Description

The digital power measuring transducer AD-LU 320 GVD measures all quantities of the power-network (current, voltage, energy, harmonics, phase angle, active power, reactive power, apparent power) and converts these measuring values onto two freely scalable analogue outputs. The unit is therefore optimal suitable for integration in energy management systems. For measuring of high voltages or high currents, external transformers can be connected in series at any time. All measuring ranges and outputs can be freely parameterized. This can be carried out via the optional operating modul AD-VarioControl or via the programming software AD-Studio. The LEDs at the front signals the operating condition. The compact type of construction and the high performance ability with simultaneous low energy consumption allows usage in almost any application.

Application

Typical usage in plant, machines or energy management systems for balancing and determination of energy distribution.

Specific characteristics

- Measurement of a phase
- Measuring quantities: active power, reactive power, apparent power, currents and voltages, frequency, power factor, harmonics (active power), energy metering
- current and voltage output
- Counters for active power (consuption and infeed), reactive power (inductive and capacitive) and apparent power
- 23 mm narrow housing with detachable terminal clamp
- Operating module AD-VarioControl as an accessory

Business data

Order number

AD-LU 320 GVD

Accessory (optional)		
Operating module	A	
USB programming adapter	AD	
Configuration software	A	

AD-VarioControl AD-VarioPass AD-Studio

40

0 ... 1 A AC; 0 ... 5 A AC

Technical specifications

Input current

Measuring ranges Max. measurable harmonic

Input voltage

Measuring range Input resistance

Output current Output range Max. load

Resolution Residual ripple

Output voltage

Output range Min. load Resolution Residual ripple

Supply

Voltage range AC Nominal voltage AC / DC Voltage range DC Power consumption AC / DC Power consumption with operating module AC / DC

Transmission behaviour

Basic accuracy Temperature influence Response time 10 ... 253 V AC > 1 MOhm 0/4 ... 20 mA 400 Ohm 11 Bit 25 μAss 0/2 ... 10 V 10 kOhm 11 Bit 20 mVss 50 ... 253 V AC, 50/60 Hz 230 V AC / 24 V DC 20 ... 253 V DC 3,4 VA / 1,8 W

< 0,5 % (class 0.5) 80 ppm/K < 0,5 s (0...90 %, 100...10 %)

3,6 VA / 2,0 W

Printed 31.05.2023 We reserve the right for technical changes.

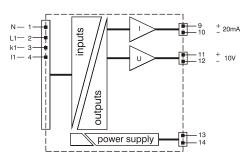
Felix-Wankel-Str. 13 Tel. +49 (0)7046-875 vertrieb@ad-messtechnik.de 74374 Zaberfeld Fax +49 (0)7046-7678 www.adamczewski.com

Power Measurement

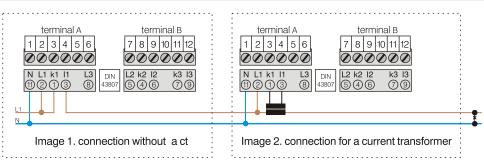
AD-LU 320 GVD

Technical specifications

Housing


Dimensions (WxHxD)	23x110x134mm
With operating module (bxhxt)	23x110x138 mm
Type of protection	IP 20
Connection method	detachable terminal clamp
Terminals, wire cross section	2,5 mm² flex wire / 4 mm² one wire
Bolting torque terminals	0,5 Nm
Skinning length	6 mm
Weight	~ 150 g
Manner of fastening	35 mm DIN rail 35mm
Environmental conditions	
A male is not to man a water wa	10 50.00

Ambient temperature	-10 50 °C
Storage and transport	-10 70 °C (no condensation)
EMC	
Product family standard	EN 61326-1 ¹⁾
Emitted interference	EN 55011, CISPR11 Cl. B, Gr. 1
¹⁾ During checking, slight signal deviations are	possible.


Electrical safety requirements

Product family standard	EN 61010-1
Overvoltage category	II
Pollution degree	2
Safety measurement	EN 61010-2-030
Measurement category	CAT III

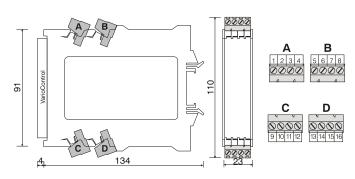
Block and wiring diagram

Circuit examples

Galvanic isolation, test voltages Input to analog outputs / power-4 kV, 50 Hz (1 min.)

supply Power-supply to analog out	3 kV, 50 Hz (1 min.)					
Protection circuits						
Input	electrical surge protection					
Power supply	protection against over-temperature,					
	over-voltage and over-current					
Analog outputs	electrical surge protection					

Display and operating elements


On: LED for operating display in green

on - normal operation flashing - Signal failure, signal outside range limits

On

Dimensions

Power Measurement

AD-LU 320 GVD

Modbus Communication

The optional AD-VarioConnect operating module has an RS-485 interface. The data is transferred via the Modbus RTU protocol, the AD-VarioConnect operating module represents a Modbus slave. Communication takes place according to the master-slave procedure and starts with a request from the master, e.g. from a PLC or a PC. Each bus participant must have a unique address. If a slave detects that its address has been addressed by the master, the slave always sends an answer. The slaves never communicate with each other. They are also not able to start a communication with the master.

The Modbus master can read out the individual registers of the AD-LU 320 GVD via the addresses.

The default standard data format is 19200,e,8,1 with slave address 1. These settings can be changed via the AD-VarioConnect operating module.

Start address	Number of registers	Name	Unit	Data type	read	write
Measured values: 40202	1	digital output A			1	1
40202 40203	1	digital output A		3	1	1
40203 40204	1	digital output B digital output A LED		3	1	1
	1			-	1	1
40205	1	digital output B LED	114/	3	1	1
40501	2	active power total	kW	/	1	0
40503	2	active power total L1	kW	/	1	0
40509	2	total reactive power	kvar	7	1	0
40511	2	reactive power L1	kvar	7	1	0
40517	2	total apparent power	kVA	7	1	0
40519	2	apparent power L1	kVA	7	1	0
40525	2	total power factor		7	1	0
40527	2	power factor in L1		7	1	0
40533	2	total active fundamental power	kW	7	1	0
40535	2	active fundamental power L1	kW	7	1	0
40541	2	total active harmonic power	kW	7	1	0
40543	2	active harmonic power L1	kW	7	1	0
40549	2	voltage L1 / N	V	7	1	0
40555	2	current N line (calculated)	A	7	1	0
40557	2	current in L1	A	7	1	0
40563	2	voltage peak L1	V	7	1	0
40569	2	current peak L1	A	7	1	0
40575	2	frequency	Hz	7	1	0
40585	2	phase angle Psi L1	0	7	1	0
40801	2	output current	mA	7	1	0
40803	2	output voltage	V	7	1	0
	•		•	•	-	
Counter:						
44003	2	counter kWh - consuption	kWh	5	1	1
44005	2	counter kWh - infeed	kWh	5	1	1
44007	2	counter kVarh - inductiv	kVarh	5	1	1
44009	2	counter kVarh - capacitiv	kVarh	5	1	1
44011	2	counter kVAh - apparent energy	kVAh	5	11	1

Legend of the datatypes:							
	U08: 1	S08: 2	U16: 3	S16: 4	U32: 5	S32: 6	float: 7